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Abstract Inter-laboratory studies (especially so-called Key Comparisons) are conducted to
evaluate both national and international equivalence of measurement. In these studies, a
reference value of some measurand (the quantity intended to be measured) is developed and
results for all labs are compared to this single value. How to determine the reference value
is not completely obvious if there are observations and/or labs that could be considered
outliers. Since ignoring results from one or more participating laboratories is untenable in
practical terms, developing methods that are robust to the possibility that a small fraction of
the labs produce observations unlike those from the others is critical. This paper outlines two
Bayesian methods of analyzing inter-laboratory data that have been proposed in the literature
and suggests three modifications of one that are more robust to outliers. A simulation study
is conducted to compare the five methods.

Keywords Hierarchical Models · Inter-laboratory Studies ·Mixtures · Outlying Laborato-
ries

Introduction

Inter-laboratory studies (especially so-called Key Comparisons) are conducted to evalu-
ate both national and international equivalence of measurement. In these studies, a reference
value of some measurand (the quantity intended to be measured) is developed and results for
all labs are compared to this single value. How to determine the reference value is not com-
pletely obvious if there are observations and/or labs that could be considered outliers. Since
ignoring results from one or more participating laboratories is untenable in practical terms,
developing methods that are robust to the possibility that a small fraction of the labs produce
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observations unlike those from the others is critical. This paper outlines two Bayesian meth-
ods of analyzing inter-laboratory data that have been proposed in the literature and suggests
three modifications of one that are more robust to outliers. A simulation study is conducted
to compare the five methods.

Models and Bayes Procedures

This section describes two models that have been proposed to analyze inter-laboratory
data and three modifications of one.

Gaussian Lab Model (BLM)

Toman [1] proposes the following Bayesian hierarchical model for inter-laboratory data,
that we refer to as the Gaussian lab model (BLM) (here the “B” is used for bell-curve). Let
Yi j denote measurement j taken by laboratory i, with i = 1, . . . ,L and j = 1, . . . ,mi. Before
displaying the BLM we introduce some notation that will be used throughout. “∼” denotes
“distributed as”, “ind∼” denotes “distributed independently as”, and “iid∼” denotes “distributed
independently and identically as”. Now, for the BLM we suppose that

Yi j
ind∼ N(δi,σ

2
i ), (1)

δi
ind∼ N(µ,τ2

i ), (2)

µ ∼ N(m,v2), (3)

where N(m,s2) denotes a Normal distribution with mean m and variance s2, µ is the measur-
and, δi is the mean for the ith laboratory, σ2

i is the corresponding within laboratory variance,
and τ2

i accounts for variability due to “Type B” uncertainty. This type of uncertainty, as
described in the Guide to the Expression of Uncertainty in Measurement (GUM) [2], is
evaluated by means other than the statistical analysis of series of observations. Equation (1)
is the data model (sometimes referred to as the likelihood), equation (2) is the laboratory
means model, and equation (3) is the prior distribution of the measurand. The parameters of
the prior distribution denoted by the latin letters m and v2 need to be specified by an analyst
using this model. (The practice of using latin letters to represent parameters whose values
are specified by an analyst continues throughout this article.) If there is knowledge of the
most probable location and/or uncertainty about the measurand (µ), then this knowledge is
incorporated in the model through m and v2. Toman [1] points out that because τ2

i repre-
sents the variability due to systematic effects, the Yi j’s aren’t informative in evaluating it.
Uncertainty due to systematic effects influences all observations in the experiment. Thus,
each participating lab calculates and provides a value for τ2

i following the protocol outlined
in the GUM. Finally, conditional independence within and between laboratories is assumed
at both levels of the hierarchy.

Posterior Distribution of µ under the BLM

Let s2
i be the laboratory i sample variance (an estimate of σ2

i ). Under the conditions that
v2→ ∞ and σ2

i is much smaller than τ2
i (which is often the case in inter-laboratory studies)
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Toman [1] argues that for fixed τ2
1 ,τ2

2 , . . . ,τ2
L the posterior distribution of µ given the Yi j’s is

approximately Gaussian with mean

µp = ∑
L
1 ȳi(τ2

i + s2
i /mi)−1

∑
L
1(τ2

i + s2
i /mi)−1

(4)

and standard deviation

sp =
1√

∑
L
1(τ2

i + s2
i /mi)−1

, (5)

where ȳi is the ith labs sample mean. Therefore, µp can be used as an estimate for µ and
hence, the reference value. The above model and approximate posterior are appealing be-
cause µp is the reference value identified in the GUM. The condition that v2→ ∞ is crucial
for obtaining the limiting Gaussian posterior distribution of µ . If we instead used a Jeffreys
prior [3] for µ we won’t have the approximate posterior distribution result. (The Jeffreys
improper prior for µ is p(µ) ∝ 1 which is the unnormalized uniform distribution on the real
line and is essentially what one would get if v2 = ∞.)

t-Lab Model (TLM)

It is known that parameter estimates in Gaussian models are typically highly influenced
by outliers. This suggests that using a Gaussian distribution to model the lab means when
one or more of the laboratories are potentially unlike the majority could prove to be prob-
lematic in estimating µ . Gelman et al. [4], among others, suggest using a t-distribution as a
robust alternative to the Normal. The t distributions can accommodate occasional extreme
observations since they have heavier tails than Normal distributions. Section 7 of Possolo et
al. [5] provides an example of using a t-distribution to model lab means in an inter-laboratory
study setting. They propose the following model which will here be referred to as the t-lab
model (TLM) .

Yi j
ind∼ N(δi,σ

2
i ),

δi
iid∼ tν(µ,τ2),

σ
2
i

iid∼ IG(aσ ,bσ ),

τ
2 ∼ IG(aτ ,bτ),

ν ∼ DU(aν ,bν),

µ ∼ N(m,v2),

where IG(a,b) denotes an Inverse Gamma distribution with mean 1/(b(a− 1)) for a > 1
and b > 0, DU(a,b) denotes the the discrete uniform distribution on {a,a + 1, . . . ,b} and
tν(µ,τ2) is a scaled(τ2) and shifted(µ) t-distribution with ν degrees of freedom. We are
now modeling the laboratory means with a shifted and scaled t-distribution with ν degrees
of freedom.

We note here that unlike what is the case in the BLM, there is a single measure of be-
tween - lab variation (τ2) that is not treated as “known,” fixed, or user-supplied but rather as
an unobserved variable (that thus, has a posterior distribution). Therefore, all uncertainties
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in the TLM (and in subsequent models) are of type A and are estimated using statistical
techniques.

For the TLM model, there is no simple description of the posterior distribution of µ .
Therefore, the distribution is approximated via simulation, using Markcov Chain Monte
Carlo (MCMC) in some fashion. (Details of the MCMC algorithm used here will be given
in the next section.) Then, using the posterior distribution we can get an estimate of µ to use
as the reference value. This estimate is usually obtained through an ergodic average from
the Monte Carlo samples of µ .

Mixture t-Lab Models

Two Component Mixture t-Lab Model (2CMTLM)

Preliminary computations comparing interval estimates for the parameter µ common to
the BLM and TLM models (based on µp and sp in the first case and the posterior distribution
of µ in the second case) suggested that neither method is completely satisfactory in the
presence of outlying laboratories. Intervals based on µp and sp fail to cover with anything
close to nominal probabilities. Bayes intervals based on the TLM model can be extremely
wide/uninformative. This motivates the search for a methodology that can handle outlying
labs without sacrificing either coverage probability or interval length. To this end, consider
the following modification of the TLM which we will call the two component mixture t-lab
model (2CMTLM). For this model we suppose

Yi j
ind∼ N(δi,σ

2
i ),

δi
iid∼ (1−π)tν(µ,τ2)+πtν(µ +ξ ,τ2),

σ
2
i

iid∼ IG(aσ ,bσ ),

π ∼ Beta(aπ ,bπ),

ξ ∼ N(mξ ,v2
ξ
),

ν ∼UN(aν ,bν),

τ
2 ∼ IG(aτ ,bτ),

µ ∼ N(m,v2).

Laboratory means are modeled with a mixture of t-distributions where the laboratory means
come from an outlier (typically “rare”) group with probability π . In this way, the mean of a
laboratory from the outlier group is not straightway used to estimate a reference value, rather
the mean is adjusted by ξ before being used to characterize µ . Chapter 7.2 of Frühwirth-
Schnatter [10] suggests using a finite mixture of Normals to model outlying observations.
Here, we are using a mixture of t-distributions to model means of outlying labs (which are
in the second level of a hierarchy). Notice, that ν is assumed to come from a continuous
uniform distribution (UN) instead of a discrete uniform. This change from the TLM model
is made for computational reasons and doesn’t much alter inference for µ .
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Three Component Mixture t-Lab Model (3CMTLM)

Often in large inter-laboratory studies there is more than one laboratory that might be
considered an outlier. Moreover, there could potentially be two types of outlying laboratories
with one group being further from the majority of the labs (or on the other side of the
majority) than the other. With this in mind, we formulate a model that allows for three types
of laboratories: The majority and two potentially distinct smaller groups that are different
from the majority. Consider the following modification of the 2CMTLM which we will call
the three component mixture t-lab model (3CMTLM). We suppose:

Yi j
ind∼ N(δi,σ

2
i ),

δi
iid∼ π1tν(µ,τ2)+π2tν(µ +ξ ,τ2)+π3tν(µ +ζ ,τ2),

σ
2
i

iid∼ IG(aσ ,bσ ),

πππ ∼ Dir(aπ ,bπ ,cπ),

ζ ∼ N(mζ ,v2
ζ
),

ν ∼UN(aν ,bν),

ξ ∼ N(mξ ,v2
ξ
),

τ
2 ∼ IG(aτ ,bτ),

µ ∼ N(m,v2).

We are now modeling the laboratory means with a three component mixture of t-distributions
each with ν degrees of freedom. The means of laboratories that belong to outlying groups are
adjusted by ξ or ζ before being used to characterize the measurand µ . We follow common
practice (Frühwirth-Schnatter [10]) and assign a Dirichlet (Dir(a,b,c)) prior distribution to
πππ , which is a vector of the classification probabilities. The rest of the model is similar to
the 2CMTLM. Once again, all Latin letters are constants whose values are assigned by the
scientist. The posterior distribution of µ is approximated using MCMC.

Label Switching in Mixture Models

A challenge in a Bayesian mixture analysis is the so called “label switching” problem,
caused by the invariance of the mixture distribution to the relabeling of components. That
is,

p(δδδ |µ,ξ ,ζ ,π,τ2) =
L

∏
i=1

{
π1tν(δi; µ,τ2)+π2tν(δi; µ +ξ ,τ2)+π3tν(δi; µ +ζ ,τ2)

}
(6)

is invariant to permutations of the 2-dimensional entries of [(π1,µ),(π2,µ +ξ ),(π3,µ +ζ )].
So using an ergodic average of the simulated draws from the posterior of µ obtained from
a Gibbs sampler would not produce a useful estimate of µ . A few solutions to this problem
have been offered in the literature (see Jasra et al. [13] for a review of the work). We seek
a method of identifying the location of the “majority” scaled t distribution such that at each
iteration of the Gibbs sampler the components of (6) are correctly “relabeled” if necessary.
We approach this using a “relabeling algorithm” like that of Stephens [14]. For the t th itera-
tion of the MCMC algorithm we would like the simulated draw from the marginal posterior
distribution of the measurand to be either µ(t), µ(t) + ξ (t) or µ(t) + ζ (t) depending on how
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the mixture is labeled by the algorithm. To do this, we assess the likelihood that each δ
(t)
i

is drawn from t-distributions centered at µ(t), µ(t) +ξ (t) and µ(t) +ζ (t). We then choose to
“relabel” the components according to which centered t-distribution most likely produces
the majority of δ

(t)
i ’s. More precisely, at every t th iteration of the MCMC algorithm (which

is described in a subsequent section) we

1. compute P(t)
g =

L

∑
i=1

π
(t)
g φ(δ (t)

i ; µ
(t)
g ,λ

(t)
i τ2(t))

∑
3
`=1 π

(t)
` φ(δ (t)

i ; µ
(t)
` ,λ

(t)
i τ2(t))

with g = 1,2,3 and µ1 = µ, µ2 = µ + ξ , µ3 = µ + ζ and where φ(·;m,v) is the
Normal density with mean m and variance v,

2. compute M(t) = maxg P(t)
g (where maxg denotes maximum across g = 1,2,3), and

3. let µ∗ denote the “re-labelled” measurand, then set

µ
∗(t) = µ

(t)
g if P(t)

g = M(t)

We then use the posterior distribution of µ∗ to make inferences on the measurand.

Partially Specified Two Component Mixture Model (PSMTLM)

When using a finite mixture to model outlying laboratories, one must take great care in
assuring that label switching is handled properly. An effective methodology that automati-
cally avoids this difficulty would be highly desirable. To this end, we propose to model the
lab means with a mixture of a t-distribution and a uniform, where the uniform is completely
specified. That is:

Yi j
ind∼ N(δi,σ

2
i ),

δi
ind∼ πtν(µ,τ2

i )+(1−π)UN(aδ ,bδ ),

σ
2
i

iid∼ IG(aσ ,bσ ),

π ∼ Beta(aπ ,bπ),

ν ∼UN(aν ,bν),

τ
2 ∼ IG(aτ ,bτ),

µ ∼ N(m,v2).

Note that the uniform component of the mixture is fully specified since we are assigning
values to aδ and bδ . The rest of the model is like the 2CMTLM. By fully specifying one
of the components of the mixture, we avoid having to deal with the label switching prob-
lem. Choosing “good” values for aδ and bδ must be done with care, as making the interval
(aδ ,bδ ) too narrow will result in excluding some Labs from the “majority” component that
belong there, and making (aδ ,bδ ) too wide will result in including some Labs in the “ma-
jority” component that don’t belong there.

Hyper prior parameter selection

As our goal is to compare the performance of the BLM and the TLM to that of 2CMTLM,
3CMTLM, and PSMTLM when possible we use prior values like those outlined in Possolo
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el al. [5]. Having said this, it should be noted that when the number of laboratories is small
the posterior distributions of the τ2

i are highly influenced by the priors and in practice these
priors should be chosen with great care. We use the same priors for those parameters that
are common to all models. Following Possolo el al. [5] we assign aν = 2 and bν = 140.
Also assigning aτ = aσ = 2.0001 and bτ = bσ = 1.0001 gives flat Inverse Gamma distri-
butions that have means of 1 and coefficient of variations of about 100 for τ2,σ2

1 , . . . ,σ2
J

(which provide a prior specification like that in Possolo el al. [5]). We assign m = 0 and
v2 = 106 which is a common “non-informative” prior specification for means of Normal
distributions. Similarly, we use a diffuse Normal for ξ and ζ . Finally for the component
weights (π) we follow Frühwirth-Schnatter [10] and make the prior probability of being an
outlier of any type small (0.1 for 2CMTLM and 0.375 for 3CMTLM). Values for aπ ,bπ , and
cπ were chosen to produce the prior probability of not being an outlier greater than 0.6. The
posterior distribution of µ was not sensitive to values selected for these prior parameters.
Table 1 contains a summary of the hyper prior parameters used in what follows.

Table 1 Hyper prior parameter values

Parameter m v2 Parameter a b c

µ 0 106 τ2 2.0001 1.0001 -
ξ 0 105 σ2

i 2.0001 1.0001 -
ζ 0 105 ν 2 140 -

π2CMT LM 9 1 -
π3CMT LM 10 5 1

MCMC algorithm

What follows is a description of a MCMC algorithm corresponding to 3CMTLM. MCMC
algorithms for the remaining procedures are similar.

One could use the Metropolis-Hastings(M-H) algorithm (see Metropolis et al. [7] and
Hastings [8]) to simulate draws from the joint posterior distribution corresponding to 3CMTLM
by using the t-density directly. But because the corresponding Gibbs sampling algorithm
(Geman et al. [6]) is often easier to implement, we use the scaled mixture of Normals rep-
resentation of the t-distribution. That is, we restate the lab mean portion of the 3CMTLM
as

δi|µ,τ,λi
ind∼ π1N(µ,λiτ

2)+π2N(µ +ξ ,λiτ
2)+π3N(µ +ζ ,λiτ

2),

λi|ν
iid∼ IG(ν/2,2/ν),

ν |aν ,bν ∼UN(aν ,bν).

Now, because

tν(δi; µ,τ2) =
∫

∞

0
N(δi; µ,λiτ

2)IG(λi;ν/2,2/ν)dλ ,

inferences on µ are unchanged by introducing the auxilliary variables {λi}L
i=1.
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The conditional distribution of δi is a mixture of t distributions. In order to utilize a
Gibbs sampling algorithm it is common practice to interpret the mixture as a missing data
problem (see Gelman el al. [4]) by introducing latent/auxilliary variables

γig =
{

1 if the ith lab is a in the gth component
0 otherwise

Therefore, each γγγ i = [γ1i,γ2i,γ3i] is a vector that consists of a one and two zeros. To complete
the model augmentation we assign a Multinomial-Dirichlet hierarchical structure to the γγγ i’s.
Using the auxiliary variables just described the 3CMTLM becomes:

Yi j|δi,σ
2
i

ind∼ N(δi,σ
2
i ),

δi|µ,ξ ,ζ ,τ2,π,ν ,γγγ i
ind∼
[
N(µ,λiτ

2)
]γ1i [N(µ +ξ ,λiτ

2)
]γ2i [N(µ +ζ ,λiτ

2)
]γ3i ,

σ
2
i |aσ ,bσ

iid∼ IG(aσ ,bσ ),

γγγ i|πππ
iid∼Multinomial(1;π1,π2,π3) with ∑

3
g=1 πg = 1,

πππ|aπ ,bπ ,cπ ∼ Dir(aπ ,bπ ,cπ),

λi|ν
iid∼ IG(ν/2,2/ν),

ν |aν ,bν ∼UN(aν ,bν),

ξ |mξ ,v2
ξ
∼ N(mξ ,v2

ξ
),

ζ |mζ ,v2
ζ
∼ N(mζ ,v2

ζ
),

τ
2|aτ ,bτ ∼ IG(aτ ,bτ),

µ|mµ ,v2
µ ∼ N(mµ ,v2

µ).

This more complicated model facilitates the use of a Gibbs sampler. ν is the only parameter
whose conditional isn’t of recognizable form, which leads to using an M-H step for updating
it. It is straightforward to simulate from p(µ,ξ ,ζ ,τ2,σσσ2,ν ,πππ,δδδ ,λλλ ,{γγγ i}L

i=1|yyy) by cycling
through the complete posterior conditionals on an individual basis using the Gibbs sampler
and a M-H step.

Simulation Study

To assess the performance of Bayesian procedures corresponding to the models pre-
sented here, we performed a simulation study. The study consisted of generating a data set
that is representative of a inter-laboratory study, then from the generated data estimating µ

by computing credible intervals from the posterior distributions obtained from the five mod-
els outlined previously, then repeating the whole process. The Bayesian procedures were
compared in terms of credible interval widths and empirical coverage relative frequency
(which here is the fraction of computed credible intervals containing the value that gener-
ated lab means out of the total number of computed credible intervals).

It should be noted that we used frequentist metrics to compare the performance of
Bayesian procedures. This is done solely for the purpose of comparison, with the hope that
we might conclude that the procedures that produce intervals that contain the “truth” more
often are more “accurate” than those that don’t and procedures that have smaller interval
widths (on average) are more “precise” than those that produce larger interval widths.
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Generation of Data Sets

In this study we generated data under the assumptions of the data model and laboratory
means model of the BLM and the TLM. First, we considered the data model combined with
the lab means model of the BLM as a data generating mechanism. That is, after specifying
values for µ , τ2

i , and σ2
i we randomly drew δi’s from N(µ,τ2

i ). Then for each δi, m values
were randomly drawn from N(δi,σ

2
i ). This produced a data set with L labs and m observa-

tions for each lab. The same procedure outlined for the BLM was followed using the TLM
except ν was fixed and δi was drawn from tν(µ,τ2). To include an outlying laboratory in
a data set, we randomly selected a δi and set its value to µ ± kτ for some constant k. To
include an “extreme” outlier, we randomly selected a δi and set its value to µ±2kτ for the
same k as before.

We assigned the same value to σ2
i and the same value to τ2

i for all i. A real inter-
laboratory data set was used to get a rough idea of a realistic value for τ2/σ2. The values
of σ2 = 1/4 and τ2 = 25/16 were used. The same data set indicated that µ = 30 is reason-
able for the variance ratio we used. Also, the same data set indicated that k = 6 provides
a reasonable representation of outlying laboratory means. We arbitrarily fixed ν to be 10.
Finally, when computing µp and sp (the center and variance of the approximate posterior
distribution under the BLM) we used the same value of τ2 that is used to generate data.
(This gives the Bayes procedures under the BLM a potential advantage when comparing
them to the Bayesian procedures under the other models.) See Figure 1 for a representation
of data generated under two different scenarios.

Versions of Procedures Compared

We did a four-factor simulation study and compare the credible intervals obtained from
the posterior distributions of µ for the BLM, TLM, 2CMTLM, 3CMTLM, and PSMTLM.
The four factors with their levels are:

1. The basic model assumptions that generate the data (the data model and lab means model
under the BLM and the TLM).

2. The number of laboratories in the study (5, 10 and 20).
3. The number of observations per laboratory (3, 5, and 10).
4. The number of outlying laboratories present (none, one, and three with one being “ex-

treme”).

Under each scenario 1000 data sets were generated, and for each one five posterior dis-
tributions of µ corresponding to the five models outlined were obtained. From these five
posterior distributions five credible intervals were computed and were compared in terms
of interval width and coverage relative frequency. The BLM posterior distribution of µ is
obtained after computing mp and sp. The TLM, 2CMTLM, 3CMTLM, and PSMTLM pos-
terior distributions for µ were approximated with 20 000 simulated MCMC draws after a
burn-in period of 30 000 and thinning of 5. Convergence of the chains was assessed us-
ing the gibbsit function in the statistical software R[11] from Raftery et al. [12]. For a few
data sets under each scenario the MCMC algorithms were run convergence was confirmed.
For the remaining MCMC chains convergence was assumed, although this wasn’t explicitly
checked.
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Fig. 1 Example of two data sets containing ten laboratories each with 10 observations that were generated in
the simulation study. Here, w denotes mass fraction. The solid black line highlights the value (30) which was
used to generate laboratory means. The left hand panel displays a data set with no outlying laboratories. The
right hand panel displays a data set with two outliers and one “extreme” outlier. The same scale was used on
both plots to facilitate comparison. Each boxplot summarizes the observations from one laboratory: in each
of these the rectangular region comprises the middle 75% of the data, the horizontal line drawn through the
rectangle represents the median of the observations, and the vertical lines extend to the extrema.

Results

The results from the simulation study (1000 simulated data sets) are presented in tables
below. In these tables the header “m” represents the number of observations per laboratory.
The column “cp” is the the absolute fraction of data sets that produce 95% credible inter-
vals that contain the “true” µ (which in this study is 30). The columns “ciwid” provide the
median credible interval width across the 1000 data sets. The column “Data Generating Pro-
cess” indicates under which data model and lab mean model the data sets were generated,
and the column “#Labs” indicates the number of participating laboratories. The “Bayes Pro-
cedure” column indicates which procedure was used to estimate µ .

The next three sections detail the results of the simulation study. It is worth noting that
increasing the number of observations per lab didn’t change results and we don’t discuss
this aspect of the study further.

No Outliers

First we compare the performance of the Bayesian procedures based on the five models
when no laboratories are outliers. Table 2 provides a summary of the results. For the most
part, the five methods give comparable answers. As expected, about 95% of the credible
intervals computed using the ∆BLM contained the “truth” when the lab means were drawn
from a Normal distribution, but not when lab means come from a t-distribution. For all
five procedures the median credible interval length decreased as the number of laboratories
increased with ∆3CMTLM having the slowest rate of decrease. Overall, when an inter-
laboratory study produces data with no outlying labs, the answers one gets by using Bayes
procedures based on more complicated models (here the mixture models) differ little from
those obtained from Bayes procedures for simpler models (the BLM and the TLM).

One Outlier

The results from the simulation study with one outlying laboratory are summarized in
Table 3. Here we see a shortcoming of ∆BLM, since the only about 20% of the credible
intervals computed using this procedure contained the “truth” while approximately 95% of
the credible intervals associated with the ∆TLM, ∆2CMTLM, ∆3CTMLM, ∆PSMTLM
were “correct.” When only considering procedures based on the models with t-distributions,
∆PSMTLM produces the shortest median length among the four, but has the lowest coverage
relative frequency. As expected, the outlying laboratory’s effect diminishes as the number
of laboratories increases. Overall, when an inter-laboratory study produces data with an
outlying lab, ∆3CMTLM and ∆PSMTLM perform quite well in balancing coverage relative
frequency and interval length.
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Table 2 Results from the simulation study when none of the labs are outliers. Under the header “cp” we
report the fraction of the 1000 credible intervals containing 30. Under the header “ciwid” we report the
median credible interval width calculated across the 1000 credible intervals.

m = 3 m = 5 m = 10

Data Generating
Process #Labs Bayes Procedure cp ciwid cp ciwid cp ciwid

BLM

5

∆BLM 0.9440 2.2447 0.9610 2.2251 0.9360 2.2086
∆TLM 0.9010 2.0126 0.9150 2.0104 0.9010 2.0154
∆2CMTLM 0.8980 2.0082 0.9160 2.0077 0.9020 2.0090
∆3CMTLM 0.9030 2.0570 0.9220 2.0436 0.9060 2.0494
∆PSMTLM 0.8990 2.0361 0.9170 2.0346 0.9020 2.0384

10

∆BLM 0.9420 1.5873 0.9380 1.5734 0.9500 1.5617
∆TLM 0.9080 1.4625 0.9130 1.4738 0.9070 1.4734
∆2CMTLM 0.9100 1.4673 0.9170 1.4831 0.9110 1.4825
∆3CMTLM 0.9250 1.6740 0.9320 1.6839 0.9340 1.6624
∆PSMTLM 0.9100 1.4722 0.9170 1.4755 0.9100 1.4841

20

∆BLM 0.9470 1.1225 0.9510 1.1126 0.9510 1.1043
∆TLM 0.9190 1.0919 0.9150 1.0783 0.9340 1.0891
∆2CMTLM 0.9250 1.1103 0.9200 1.0969 0.9400 1.1098
∆3CMTLM 0.9730 1.7444 0.9770 1.6894 0.9730 1.6963
∆PSMTLM 0.9200 1.0923 0.9160 1.0783 0.9360 1.0943

TLM

5

∆BLM 0.9290 2.2444 0.9180 2.2250 0.9270 2.2084
∆TLM 0.9200 2.1070 0.9010 2.0619 0.9080 2.0971
∆2CMTLM 0.9210 2.1081 0.8960 2.0641 0.9130 2.0969
∆3CMTLM 0.9350 2.1591 0.9020 2.1067 0.9180 2.1582
∆PSMTLM 0.9250 2.1402 0.9000 2.0777 0.9140 2.1261

10

∆BLM 0.9150 1.5870 0.9160 1.5733 0.9250 1.5617
∆TLM 0.9140 1.5934 0.9120 1.5833 0.9060 1.5938
∆2CMTLM 0.9190 1.5996 0.9140 1.5933 0.9070 1.5970
∆3CMTLM 0.9380 1.8418 0.9370 1.8025 0.9340 1.8027
∆PSMTLM 0.9160 1.5978 0.9160 1.5841 0.9080 1.5844

20

∆BLM 0.9130 1.1225 0.9270 1.1127 0.9210 1.1043
∆TLM 0.9180 1.1789 0.9370 1.1639 0.9270 1.1771
∆2CMTLM 0.9220 1.2006 0.9420 1.1885 0.9340 1.1978
∆3CMTLM 0.9780 1.8341 0.9720 1.8055 0.9770 1.7913
∆PSMTLM 0.9150 1.1733 0.9350 1.1618 0.9290 1.1717

Three Outliers

Table 4 provides a summary of the simulation results when two laboratories were out-
liers and a third was an “extreme” outlier. Note that the situation when there are 5 labs is
extreme, as more than half of the labs are outliers. Hence, the credible intervals are very un-
informative. Here ∆3CMTLM and ∆PSMTLM have comparable median credible interval
lengths and coverage relative frequencies in all scenarios. The same holds true for ∆TLM
and ∆2CMTLM. The former duo has shorter credible intervals compared to the latter re-
gardless of the number of laboratories. In contrast, the latter duo has higher coverage rel-
ative frequencies compared to the former for all scenarios except that when the number of
laboratories is 5. Generally speaking, it appears that using ∆PSMTLM or ∆3CMTLM to
analyze data from inter-laboratory studies produces coverage relative frequencies and cred-
ible interval widths at least as favorable as those from the ∆BLM, ∆TLM, and ∆2CMTLM.
But this advantage diminishes as the number of laboratories increases.



12

Table 3 Results from the simulation study where one lab was randomly selected to be an outlier. Under the
header “cp” we report the fraction of the 1000 credible intervals containing 30. Under the header “ciwid” we
report the median credible interval width calculated across the 1000 credible intervals.

m = 3 m = 5 m = 10

Data Generating
Process #Labs Bayes Procedure cp ciwid cp ciwid cp ciwid

BLM

5

∆BLM 0.2150 2.2437 0.2240 2.2242 0.2390 2.2082
∆TLM 0.9580 4.7758 0.9550 4.7474 0.9630 4.7583
∆2CMTLM 0.9550 4.2252 0.9450 4.2423 0.9480 4.2858
∆3CMTLM 0.9500 3.4541 0.9450 3.4073 0.9390 3.4145
∆PSMTLM 0.9350 2.7779 0.9340 2.7324 0.9190 2.7580

10

∆BLM 0.5150 1.5879 0.5270 1.5732 0.5370 1.5616
∆TLM 0.9610 2.4695 0.9670 2.4346 0.9670 2.4509
∆2CMTLM 0.9530 2.1790 0.9510 2.0948 0.9470 2.1804
∆3CMTLM 0.9560 1.8680 0.9450 1.8155 0.9440 1.8690
∆PSMTLM 0.9370 1.6590 0.9220 1.6012 0.9310 1.6443

20

∆BLM 0.7430 1.1227 0.7160 1.1127 0.7400 1.1043
∆TLM 0.9460 1.3354 0.9460 1.3488 0.9510 1.3184
∆2CMTLM 0.9420 1.2231 0.9440 1.2286 0.9580 1.2245
∆3CMTLM 0.9640 1.4639 0.9660 1.5004 0.9800 1.4587
∆PSMTLM 0.9280 1.1188 0.9330 1.1183 0.9470 1.1144

TLM

5

∆BLM 0.2430 2.2425 0.2400 2.2243 0.2300 2.2083
∆TLM 0.9550 4.8222 0.9470 4.8222 0.9510 4.8253
∆2CMTLM 0.9510 4.2746 0.9460 4.3509 0.9420 4.4027
∆3CMTLM 0.9470 3.4593 0.9420 3.5441 0.9400 3.6358
∆PSMTLM 0.9390 2.8136 0.9250 2.9096 0.9210 2.9816

10

∆BLM 0.5610 1.5875 0.5430 1.5736 0.5390 1.5618
∆TLM 0.9740 2.5936 0.9530 2.5887 0.9620 2.5467
∆2CMTLM 0.9580 2.3911 0.9330 2.3851 0.9400 2.3575
∆3CMTLM 0.9540 2.0777 0.9340 2.0692 0.9370 2.0466
∆PSMTLM 0.9340 1.7579 0.9160 1.7623 0.9130 1.7504

20

∆BLM 0.7470 1.1226 0.7190 1.1128 0.7220 1.1043
∆TLM 0.9550 1.4455 0.9410 1.4439 0.9500 1.4403
∆2CMTLM 0.9550 1.3735 0.9430 1.3955 0.9400 1.3837
∆3CMTLM 0.9720 1.6218 0.9610 1.6299 0.9730 1.6075
∆PSMTLM 0.9450 1.2137 0.9310 1.2282 0.9300 1.2278

General Remarks

It is interesting that under all scenarios, as the number of labs increase the coverage rela-
tive frequency for ∆3CMTLM increases (this is particularly true when there are not outliers
present). This could indicate that this procedure is over fitting the data (particularly when
there are no outliers present). Also, for all procedures, introducing an outlying laboratory
improves the coverage relative frequency. This might be due to the fact that an outlying
laboratory creates wider credible intervals making them more conservative.

Fig. 2 Side-by-side boxplots depicting results from the NIST/NOAA sponsored inter-laboratory study. The
material used was white-sided dolphin (Lagenorhynchus acutus) liver homogenate (QC04LH4). Here, w de-
notes mass fraction. The figure on the left displays the mass fraction results for Cs (left) and figure on the left
Se. Each boxplot summarizes the observations from one laboratory: in each of these the rectangular region
comprises the middle 75% of the data, the horizontal line drawn through the rectangle represents the median
of the observations, and the vertical lines extend to the extrema.
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Table 4 Results from the simulation study where two labs were randomly selected to be outliers with one
additional lab being an “extreme” outlier. Under the header “cp” we report the fraction of the 1000 credible
intervals containing 30. Under the header “ciwid” we report the median credible interval width calculated
across the 1000 credible intervals.

m = 3 m = 5 m = 10

Data Generating
Process #Labs Bayes Procedure cp ciwid cp ciwid cp ciwid

BLM

5

∆BLM 0.5060 2.2453 0.4960 2.2245 0.4900 2.2087
∆TLM 0.5370 11.9303 0.5240 11.3983 0.5110 10.7906
∆2CMTLM 0.5250 10.8552 0.5210 10.8928 0.5020 10.8439
∆3CMTLM 0.7720 10.4665 0.7790 10.4085 0.7610 10.4068
∆PSMTLM 0.8610 10.9107 0.8990 10.7670 0.9020 10.7075

10

∆BLM 0.5010 1.5880 0.5000 1.5737 0.5080 1.5616
∆TLM 0.9750 5.4523 0.9710 5.4569 0.9600 5.3987
∆2CMTLM 0.9860 5.5723 0.9760 5.6016 0.9700 5.5620
∆3CMTLM 0.9400 2.2056 0.9350 2.4512 0.9310 2.2394
∆PSMTLM 0.9460 2.1701 0.9360 2.2732 0.9320 2.2471

20

∆BLM 0.4920 1.1231 0.4630 1.1126 0.4940 1.1043
∆TLM 0.9540 1.4915 0.9560 1.4746 0.9620 1.4546
∆2CMTLM 0.9600 1.6315 0.9600 1.5974 0.9690 1.5761
∆3CMTLM 0.9470 1.2011 0.9310 1.2083 0.9490 1.1978
∆PSMTLM 0.9450 1.2006 0.9310 1.2010 0.9380 1.1955

TLM

5

∆BLM 0.4950 2.2434 0.4820 2.2245 0.4810 2.2082
∆TLM 0.5390 11.8010 0.5150 10.8360 0.5120 10.8453
∆2CMTLM 0.5280 10.8229 0.4990 10.7027 0.5000 10.7564
∆3CMTLM 0.7550 10.6090 0.7420 10.5143 0.7170 10.4669
∆PSMTLM 0.8530 10.9938 0.8550 10.7682 0.8590 10.6688

10

∆BLM 0.4840 1.5873 0.4950 1.5739 0.4890 1.5617
∆TLM 0.9620 5.6568 0.9680 5.6010 0.9590 5.6226
∆2CMTLM 0.9720 5.7769 0.9730 5.7295 0.9700 5.7487
∆3CMTLM 0.9490 2.8456 0.9380 2.8147 0.9470 2.901
∆PSMTLM 0.9460 2.5406 0.9330 2.5548 0.9300 2.6721

20

∆BLM 0.4610 1.1226 0.4730 1.1126 0.4510 1.1043
∆TLM 0.9680 1.6307 0.9680 1.5831 0.9670 1.5703
∆2CMTLM 0.9720 1.8314 0.9730 1.7669 0.9690 1.7477
∆3CMTLM 0.9570 1.3617 0.9400 1.3409 0.9480 1.3391
∆PSMTLM 0.9450 1.3126 0.9310 1.3024 0.9470 1.2929

Analyses of Data From a NIST/NOAA Inter-laboratory Study

Here we apply the five procedures outlined in previous sections to data coming from a
NIST/NOAA inter-laboratory study conducted to measure trace elements in marine mam-
mals. We provide a brief description of the inter-laboratory protocol and refer interested
readers to details in Christopher et al. [15]. In this study 33 laboratories measured concen-
trations of several analytes on marine mammal tissue (white-sided dolphin (Lagenorhynchus
acutus) liver homogenate (QC04LH4)) with varying replicates per laboratory. We consider
only selenium (Se) and caesium (Cs) here because Se was measured by a large number of
laboratories (26) while Cs was measured by a relatively small number of labs (15). Figure
2 provides side-by-side box-plots of the measurement results for both analytes. We use the
five procedures to estimate a reference value and its uncertainty for both trace elements. For
the analysis of Cs the values of aσ , bσ , aτ , and bτ used in the simulation study were not ap-
propriate. Their use artificially inflated the estimates of the σ2

i ’s and τ2. Because of this, we
used aσ = aτ = 2.0001 and bσ = bτ = 1000. This resulted in prior distributions for the σ2

i ’s
and τ2 that had means approximately equal to 0.001 and standard deviations approximately
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equal to
√

10. Also, we set aδ = 0,bδ = 0.5. Results are provided in Table 5 and Figure 3.

Table 5 Means and 95% intervals from the posterior distributions of µ obtained using the five procedures
outlined in the article and results from the NIST/NOAA sponsored inter-laboratory study of the mass fractions
of Cs and Se (all resultls in mg/kg).

Posterior 95% Credible Posterior 95% Credible
mean (Cs) Interval mean (Se) Interval

BLM 0.043 (0.043, 0.043) 4.052 (3.551, 4.553)
TLM 0.034 (0.019, 0.052) 3.300 (3.008, 3.590)
2CMTLM 0.030 (0.017, 0.046) 3.336 (3.020, 3.654)
3CMTLM 0.029 (0.018, 0.039) 3.277 (2.961, 3.603)
PSMTLM 0.028 (0.019, 0.038) 3.273 (3.010, 3.552)

For Se, where the number of laboratories that provided measurements was fairly large
(26), there is little difference in reference value estimates and intervals between the four
procedures designed to be robust alternatives to that for the Gaussian lab model. However,
for Cs the credible interval coming from PSMTLM was the shortest with that coming from
3CTMLM being slightly larger. The TLM and 2CMTLM procedures provided similar es-
timates and credible intervals. The results of the analysis echo a finding of the simulation
study. For both trace elements the estimates of the measurands under the BLM (which is
the weighted average recommended by the GUM) were pulled towards the outlying labo-
ratories. Hence, the BLM estimates were influenced by outlying laboratories more than the
other four procedures.

Fig. 3 Posterior distributions for µ under the five procedures. Here, w denotes mass fraction. The solid dots
are the raw lab means from the NIST/NOAA marine mammal inter-laboratory data set. White-sided dolphin
(Lagenorhynchus acutus) liver homogenate (QC04LH4) was the material used in the inter-laboratory study.

Conclusions

In an inter-laboratory study setting, completely ignoring results from one or more par-
ticipating laboratories is usually untenable in practical terms. Because of this, we have at-
tempted to develop a methodology that even in cases involving outlying labs produces cred-
ible intervals that maintain a roughly 95% coverage relative frequencies while remaining
informative. We proposed the 2CMTLM, 3CMTLM, and PSMTLM as three alternatives to
using t distributions as the basis for a Bayes analyses. Then we conducted a simulation study
that compared the Bayesian procedures based on five models (the BLM, TLM, 2CMTLM,
3CTMLM, and PSMTLM). We found that the Bayes procedures under the 3CMTLM and
the PSMTLM produce results comparable to those under the BLM and the TLM when no
outliers are present and usually have better coverage relative frequencies with smaller in-
terval widths when outliers were present. But advantages that accompany ∆3CMTLM and
∆PSMTLM diminish as the size of the inter-laboratory study increases. The analyst should
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carefully weigh the advantages and disadvantages of the methods before making an analysis
decision.
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