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Combination chemotherapy treatment regimens created for patients diag-
nosed with childhood acute lymphoblastic leukemia have had great success in
improving cure rates. Unfortunately, patients prescribed these types of treat-
ment regimens have displayed susceptibility to the onset of osteonecrosis.
Some have suggested that this is due to pharmacokinetic interaction between
two agents in the treatment regimen (asparaginase and dexamethasone) and
other physiological variables. Determining which physiological variables to
consider when searching for interactions in scenarios like these, minus a pri-
ori guidance, has proved to be a challenging problem, particularly if interac-
tions influence the response distribution in ways beyond shifts in expectation
or dispersion only. In this paper we propose an exploratory technique that
is able to discover associations between covariates and responses in a gen-
eral way. The procedure connects covariates to responses flexibly through
dependent random partition distributions and then employs machine learning
techniques to highlight potential associations found in each cluster. We pro-
vide a simulation study to show utility and apply the method to data produced
from a study dedicated to learning which physiological predictors influence
severity of osteonecrosis multiplicatively.

1. Introduction. In studies that collect covariate measurements on subjects/experi-
mental units in addition to a response, it is of principal interest to determine which covariates
influence the response and in what way. This seemingly benign statistical problem has been
seriously considered for many years with methods ranging from exploratory techniques to
more model-based procedures. Perhaps the reason why research dedicated to this problem
persists is that, in practice, building a statistical model is as much an art as a science. This
is a consequence of important or “significant” associations depending completely on the fac-
tors included in the model. Therefore, knowing which effects to include in a model is cru-
cial, but this information is rarely known a priori. Since this information is rarely known,
an approach that is commonly used in practice proposes fitting a saturated model (a model
containing all possible covariates or predictors) and then employing some type of multiplic-
ity test correction, model selection criterion, shrinkage method or stochastic search to locate
“significant” factors (see, e.g., Chung and Dunson (2009), George and McCulloch (1997),
Ishwaran and Rao (2005), Mitra, Müller and Ji (2017), Scott and Berger (2010), Smith and
Kohn (1996), Tibshirani (1996)). These methods have been shown to work well in many in-
stances (Barrera-Gómez et al. (2017)). However, when multiplicative effects and/or nonlinear
associations are present and are of interest, a fairly common scenario (see, e.g., Hu, Joshi and
Johnson (2009), Lim and Hastie (2015)), the process of identifying associations becomes
much more problematic as the saturated model can quickly become unwieldy. This happens
to be the case in the study under consideration, where we examine which factors affect the
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severity of osteonecrosis in children treated for acute lymphoblastic leukemia (ALL). Interest
lies in learning how time-varying physiological and other baseline covariates, such as gender,
triglycerides and body mass index (BMI) influence disease severity in an additive or multi-
plicative fashion. Employing the saturated model approach here with all possible two-way
and/or three-way interactions becomes computationally expensive and inferentially difficult,
so knowing which covariates to consider is important.

Adding to the complexity of the scenario just described, methods used to identify associ-
ations (either additive or multiplicative) are geared toward discovering covariates that only
influence the mean of the response distribution. It is completely plausible that interactions
also influence the variance or even the shape of the response distribution, and most meth-
ods are not equipped to detect these types of associations. Regression methods that allow
covariates to influence the entire response (or error) distribution have been developed and
are commonly known as density regression (see Dunson, Pillai and Park (2007), Fan, Yao
and Tong (1996)). There has been work in density regression that simultaneously carries out
variable selection (Shen and Ghosal (2016), Tokdar, Zhu and Ghosh (2010)), but they require
that all effects of interest be included in a model. Though it may be possible to extend work
done in density regression to incorporate multiplicative effects, a priori information would
be necessary to guide which of these effects to consider. In light of this, an exploratory pro-
cedure that is able to discover possible associations in a general way, prior to model fitting,
would be appealing.

There is a growing literature dedicated to methods developed with the main purpose of
explicitly identifying interactions without restricting themselves to variable selection. Reich
et al. (2012) develop a statistical emulator and devise a procedure that allows them to learn
how the inputs of a stochastic computer model influence the output (which is a distribution).
Bien, Taylor and Tibshirani (2013) use the Lasso, and Lim and Hastie (2015) utilize the
group Lasso to detect interactions from hierarchically coherent models (i.e., two-way inter-
actions are present only if both main effects are present). Kapelner and Bleich (2016) em-
ploy Bayesian additive regression trees (BART) to identify interactions while Du and Linero
(2018) develop methods based on Bayesian decision tree ensembles that incorporate an addi-
tive component. XGBoost (Chen and Guestrin (2016)) is a scalable machine learning system
for tree boosting that has also been employed to discover interactions. In more recent work,
Ferrari and Dunson (2019) use a factor model to induce models that include interactions and
Agrawal et al. (2019) search for interactions in high dimensions.

The methods just cited are developed for specific scenarios while what we propose is
more general and can be employed with any data model, making the procedure essentially
“model free.” This is important for our application; as the response is ordinal, rendering
many of the works just cited unavailable. Thus, the exploratory procedure we propose dis-
covers associations where anything is fair game, in the sense that associations could be
additive and/or multiplicative and could influence any aspect of the response density (i.e.,
mean, spread, shape, etc.) regardless of the data model that will eventually be employed.
Our goal is ambitious and, admittedly, being able to discover all possible interactions in the
general way we are proposing is, presumably, not possible. Thus, we do not claim that the
exploratory approach detailed in the sequel discovers all “significant” interactions; rather it
provides guidance to practitioners by highlighting possible interactions with very little over-
head.

We finish our literature review noting that there is a growing literature dedicated to so-
called subgroup analysis, that is, the study of heterogenous treatment effects among sub-
groups of a study population. Subgroups are typically identified or defined based on specific
values in the covariate space. Since subpopulation treatment effects are of principal interest,
focus is placed on studying the interaction between a covariate and a treatment (see, e.g.,
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Berger, Wang and Shen (2014), Henderson et al. (2020), Liu et al. (2017), Schnell et al.
(2016), Simon (2002), Su et al. (2018), Varadhan and Wang (2014)). Our approach is more
general in nature but can be used as an exploratory tool to help discover which covariates
interact with the treatment and provide guidance by spotting subpopulations of potential in-
terest.

As a point of terminology, in what follows we use the term “interaction” to denote some-
thing more general than what is referred to in a linear model setting. Here, an interaction
exists if the response distribution is in some way influenced by specific combinations of co-
variate values. This general conception includes the special case where all the influence is
carried by only one of the covariates. Thus, we recommend carefully investigating the “in-
teractions” detected by our method to gain insight into how they (and the covariates they
contain) influence the response distribution. This highlights the exploratory nature of our
proposal.

The remainder of the article is organized as follows. In Section 2 we detail the data col-
lected from the study that motivated this work. Section 3 provides an overview of our ap-
proach with some background on dependent random partition distributions and association
rules. Section 4 provides more details of our approach, and Section 5 describes two simu-
lation studies. In Section 6 we apply the procedure to the osteonecrosis data, and Section 7
contains a brief discussion. All publicly available source code used to implement the meth-
ods we develop are available in the Supplementary Material (Page, Quintana and Rosner
(2021b)).

2. Osteonecrosis study. The study we consider was designed to learn more about fac-
tors affecting risk for osteonecrosis in children suffering from acute lymphoblastic leukemia
(ALL). With combination chemotherapeutic regimens, five-year survival is around 85% over-
all for childhood ALL, with some subgroups’ rates well above 90% (American Cancer So-
ciety (2018)). These regimens include the drug asparaginase and the steroid dexamethasone.
Some have suggested that there is a pharmacokinetic interaction between these two agents,
leading to greater interpatient variability and severe adverse events (Kawedia et al. (2011)).
The principal aim of the motivating study was to learn about relationships between physi-
ological characteristics and treatment characteristics and how these relationships influence
susceptibility to osteonecrosis as a result of therapy. The analysis considers a number of
physiological covariates measured on each patient, including low-density lipoprotein (LDL),
high-density lipoprotein (HDL) levels, body mass index (BMI) and others. In addition to
these covariates, the data include plasma levels of dexamethasone, cortisol and asparaginase
at various times during each patient’s course of treatment (baseline, week 7, week 8) to ex-
plore how the pharmacokinetics (PK) of these substances influenced the risk and severity of
osteonecrosis and whether other factors interact with the drugs’ PK. Finally, demographic
variables include age at diagnosis, gender and race. In total, 23 predictors were considered
with numerical summaries provided in Tables 1 and 2. Out of the 400 patients in the study,
we have complete data vectors for 234, and we focus on these.

TABLE 1
Number of patients in each gender by race category

Gender Asian Black Hispanic Other White

Female 1 21 8 7 96
Male 2 19 8 3 69
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TABLE 2
Numerical summary of the 19 continuous covariates measured on each subject in the osteonecrosis study

Covariate Min. Q1 Q2 Mean Q3 Max.

AgeAtDiagnosis 1.02 3.20 5.23 6.77 9.68 18.84
DexClWk07 1.99 9.03 14.69 21.83 25.03 458.07
DexClWk08 1.62 8.09 11.67 14.07 16.62 61.71
CortisolBaseline 0.25 4.07 5.67 7.46 8.22 59.41
CortisolWk07 0.11 4.93 7.12 9.00 10.34 55.16
CortisolWk08 0.00 0.32 0.58 1.11 1.01 30.27
HDLBaseline 11.30 39.05 48.60 56.28 59.25 271.00
HDLWk07 10.70 41.92 52.50 59.10 67.20 198.00
HDLWk08 1.90 29.45 44.00 50.31 61.50 238.00
LDLBaseline 13.00 62.00 82.00 83.95 104.75 195.00
LDLWk07 15.00 57.25 80.00 82.04 100.38 218.00
LDLWk08 5.00 50.25 68.00 73.44 91.50 179.00
TriglyceridesBaseline 20.00 58.62 87.50 104.60 124.75 472.00
TriglyceridesWk07 20.00 55.02 74.50 114.79 132.50 885.00
TriglyceridesWk08 15.90 75.25 122.50 220.75 286.00 1029.50
AlbuminBaseline 3.30 4.00 4.20 4.17 4.40 5.10
AlbuminWk07 2.10 3.20 3.90 3.75 4.30 4.80
AlbuminWk08 2.20 3.10 3.60 3.56 4.00 4.80
BMIBasline 12.19 15.68 16.77 18.05 19.23 38.48
AsparaginaseAntibodyAUC 0.42 1.07 3.54 14.20 24.83 93.85

Table 1 displays the gender-by-race distribution with each gender being equally repre-
sented. A third binary covariate (called LowRisk) which indicates the prognosis of the pa-
tient’s leukemia (low or high risk of relapse) is also included. This variable should be highly
influential because exact treatment regimens are based on patients’ risk factors relating to
prognosis of their leukemia. Of the 234 subjects, 109 were in the low-risk group while 125
were in the high risk. Table 2 provides a numerical summary of continuous covariates. No-
tice that a few of them are highly right skewed. Empirical correlations between time-varying
covariates suggest that temporal dependence is also present. This dependence can be accom-
modated in our approach and is formally considered in the model developed by Barcella
et al. (2018). We briefly comment that week 12 measurements were also collected, but very
irregularly. This resulted in many incomplete covariate vectors, and for this reason we only
consider measurements taken up to week 8.

The response measured in this study reflects the severity of osteonecrosis ranging on an
ordinal scale from 0 for none, up to 4 for high grade. Table 3 contains the number of pa-
tients by grade of osteonecrosis. We expect, but do not force, the covariates’ influences on
osteonecrosis grade to be multiplicative, but it is not clear which covariates to pair together
when exploring multiplicative effects. This is something we hope to discover.

TABLE 3
Grade of osteonecrosis and the number of patients

diagnosed for each one

Osteonecrosis Grade

0 1 2 3 4

Number of Subjects 73 115 27 17 2
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3. Background and preliminaries. The exploratory procedure we develop consists of
three stages. In this section we introduce each one and then provide notation and background
information necessary to make ideas concrete.

The first step consists of connecting covariates to the response by way of a dependent ran-
dom partition model. These types of models create partitions of the data taking into account
homogeneity among covariates, and, in particular, some of these models, such as the PPMx
by Müller, Quintana and Rosner (2011), aim specifically at constructing priors for which two
individuals with similar covariate values are more likely to cocluster. The resulting partition
is, a posteriori, weighted by the corresponding cluster sizes, the likelihood component and
the similarity of covariates that belong to a cluster. This feature has proven to be quite useful
in capturing many types of nonlinearities present in the data, including combined changes in
shape, location and scale of the predictive distribution as the predictors change. Since these
types of models are closely related to discrete random probability models of the type used in
Bayesian nonparametrics, which are well known for their flexibility (see, e.g., Müller et al.
(2015)), in theory, any statistical model that produces (explicitly or implicitly) a covariate
dependent partition may be employed. This includes the dependent Dirichlet process mixture
(DDP) model of MacEachern (2000) and its variants (e.g., ANOVA DDP of De Iorio et al.
(2004)). As explained below, we adopt here the PPMx model.

In the second step the estimated partition from step 1 is used to identify potentially inter-
esting interactions. One possible way of employing the partition to pinpoint potential inter-
actions is to identify covariates that seem to influence cluster formation. This would imply
that an association exists among the influential covariates and the response (a necessity for an
interaction to exist). Identifying influential covariates can be done by determining which co-
variates have the same (or similar) values for many individuals in a cluster. An unsupervised
learning technique developed to carry out this type of search establishes so-called association
rules (Han, Kamber and Pei (2012), Chapter 6). There is precedence to using association rules
as a tool to identify interactions (see Heba et al. (2014)), but we use them to rank potential
interactions based on their “importance.” Ranking interactions based on their “importance”
is, implicitly, something all procedures described in Section 1 do. Many of the procedures,
however, provide very little guidance or criteria on how to determine which interactions are
simply noise. This motivates the inclusion of a third step to our exploratory approach.

In the third step of our procedure, we verify that a detected interaction indeed affects the
response distribution. This is done by comparing posterior predictive densities that are based
on specific values from covariates that were identified by an association rule. If the posterior
predictive densities do not change as a function of the covariates found in the association rule,
then their association with the response is weak at best. (As a side note, Gabry et al. (2019)
advocate using a posterior predictive distribution as an exploratory or confirmatory tool.) We
now provide more pertinent background information for dependent random partition models
and association rules.

3.1. Dependent random partition models. We begin by introducing some notation. Let
i = 1, . . . ,m index the m experimental units in a designed experiment or m subjects in an
observational study. Further, let ρm = {S1, . . . , Skm} denote a partitioning (or clustering) of
the m units into km subsets such that i ∈ Sj implies that unit i belongs to cluster j . A com-
mon alternative notation that specifies a partitioning of the m units into km clusters is to
introduce m cluster labels s1, . . . , sm such that si = j implies i ∈ Sj . We will use Yi to
denote the ith subject’s response variable with Y = (Y1, . . . , Ym) denoting an m dimen-
sional response vector and Y �

j = {Yi : i ∈ Sj } the j th cluster’s response vector. Similarly, let
X = (X1, . . . ,Xm) denote a covariate vector and X�

j = {Xi : i ∈ Sj } a partitioned covariate
vector. When p covariates are measured on each individual, both continuous and qualitative,
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then Xi = (Xi1, . . . ,Xip) will denote the ith individual’s p-dimensional covariate vector
and, with a slight abuse of notation, set X�

j = (X�
j1, . . . ,X

�
jp) where X�

jh = {Xih : i ∈ Sj }
for h = 1, . . . , p. Thus, depending on context, X�

j could possibly be a super vector of stacked
patients’ covariate vectors.

We now introduce notation associated with the model that will be employed to connect
X to Y through ρm. A dependent random partition prior distribution is assigned to ρm.
This prior distribution parametrized by η, will be denoted using RPMX(η). Once a prior
for ρm is specified, we will make use of f (Y | ρ) = ∏kn

j=1 fj (Y
�
j ) as a data model where

fj (Y
�
j ) = ∫ ∏

i∈Sj
fj (Yi | θ�

j ) dG0(θ
�
j ), fj (· | θ�

j ) denotes the likelihood for Y �
j and G0 a

prior for cluster specific parameters θ�
j . Note that unit-specific parameters can be connected

to their cluster-specific counterpart via θ i = θ�
si

. Alternatively, the data model can be written
hierarchically using the cluster labels s1, . . . , sn in the following way:

Yi | θ�, si
ind∼ fsi

(
θ�

si

)
for i = 1, . . . ,m,

θ�
�

iid∼ G0 for � = 1, . . . , km,(3.1)

ρm | X ∼ RPMX(η).

Notice that covariates do not appear in the data model so that neither prespecified associa-
tions nor their forms are required. As a result, Y is only connected to X through the posterior
distribution of ρm (denoted by π(ρm | Y ,X)) which will facilitate our interaction search.
There are a number of computational techniques that have been developed to fit model (3.1).
Most are some variant of MCMC that depends on the exact specification of RPMX(η). We opt
to employ algorithm 8 of Neal (2000) when fitting model (3.1), since it is a general algorithm
that can be used in a variety of settings.

As already discussed, there are many possibilities for RPMX(η). In what follows we em-
ploy the covariate dependent random partition model (PPMx) described in Müller, Quintana
and Rosner (2011) (and further explored in Page and Quintana (2018)) because of its flexi-
bility in being able to easily incorporate all types of covariates. The exact form of RPMX(η)

when adopting the PPMx is

RPMX(η) ∝
km∏

j=1

c(Sj )g
(
X�

j | η)
,

where c(S) is a set function that measures the chance that elements in S co-cluster a priori,
and g(X� | η) = ∫ ∏

i∈Sj
q(Xi | ξ �)q(ξ � | η) dξ � is a similarity function that produces higher

values for X�’s that contain covariate values that are more similar. Here, q(· | ·) denotes
an auxiliary probability model (likelihood and prior) that has no effect in the data model
and is used only to introduce the desired effect in the similarity function. When multiple
covariates of different types are available, Müller, Quintana and Rosner (2011) suggest using
the following multiplicative form:

g
(
X�

j | η) =
p∏

�=1

g
(
X�

j� | η)
.(3.2)

3.2. Association rules. Association rules are used to discover patterns or relations among
a large collection of variables. They are typically denoted using {A} ⇒ {B} where A and B

define a subset of the covariate space that does not share any variables. Connecting the idea
to the osteonecrosis study, a possible association rule is {A = AgeAtDiagnosis ∈ [3,5)} ⇒
{B = DexClWk07 ∈ [9,12)} which would indicate that if AgeAtDiagnosis is between three
and five, then DexClWk07 is between nine and 12.
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There are two criteria to evaluate the importance of {A} ⇒ {B}. The first, called support,
is the proportion of patients whose covariate vector contains both A and B . The second crite-
rion, called confidence, is the fraction of patients that display B among those that display A.
Our criteria to determine which covariate pairs to consider when looking for interactions will
be those with large support and confidence. For a more detailed overview of association rules,
we refer interested readers to Hastie, Tibshirani and Friedman (2009), Chapter 14, or Han,
Kamber and Pei (2012), Chapter 6.

The typical notation used for association rules highlights the fact that they are, by nature,
directional. However, our only purpose in using association rules is to identify pairs of co-
variates that are associated with each other and possibly influence the distribution of Y in a
nonadditive way. Because of this, we will use X1 ⇔ X2 to denote that, at least, one asso-
ciation rule contained the pair X1,X2 in some fashion as the direction of the association is
immaterial for our purposes.

4. Interaction discovery procedure. In this section we provide more details of our
three-step interaction discovery procedure, after which we provide two simulation studies.
In what follows we will refer to the three-step procedure as the Random partition, Associa-
tion rule, Interaction Discovery procedure (or the RAID procedure).

A natural way of employing π(ρm | Y ,X) in the second stage of the exploratory proce-
dure is to produce a point estimate of ρm using methods found in Dahl (2020) (or some other
alternative) and then apply association rules to each of the resulting X�

j s. However, as noted
by Wade and Ghahramani (2018), there might be substantial variability associated with the
partition point estimate. Therefore, we instead apply association rules to the resulting X�

j s
for each (or a subset) of the MCMC draws collected. This approach provides a means of
propagating uncertainty associated with ρm through the exploratory procedure. Since the in-
teractions identified will be based on specific clusters, they are local in the same way that
treatment effects are local in subset analysis. That is, the interaction may not remain consis-
tent across the entire population. (We explore this in the simulation study of Section 5.2.) We
briefly note that applying association rules to each of the X�

j ’s is crucial to finding interac-
tions, as they are connected to Y through π(ρm | Y ,X). Applying association rules directly
to X would make interaction detection impossible as there is no connection to Y .

As stated previously, the third step consists of using posterior predictive densities to con-
firm interactions. To make this step concrete, consider an example with three binary covari-
ates. Let pijk(Y0 | Y ,X) denote the posterior predictive density for X1 = i, X2 = j and
X3 = k with i, j, k ∈ {0,1}, and assume that, within a cluster, the association rule with high-
est total support and confidence is X1 ⇔ X2. To verify that there does indeed exist what we
call an interaction between (X1,X2), we test the following hypothesis (after fixing X3 = k to
its empirical median):

H0 : p00k(Y0 | Y ) = p01k(Y0 | Y ) = p10k(Y0 | Y ) = p11k(Y0 | Y ).(4.1)

If the hypothesis is rejected, then we conclude that X1 and X2 interact. That is, the predic-
tive distribution of Y is, in some way, influenced by X1 and/or X2, and the specific way in
which this occurs can be later explored separately. A similar approach would be employed if
association rules highlighted any of the other possible two-way interactions (i.e., X1 ⇔ X3,
X2 ⇔ X3). We also consider the possibility of a three-way interaction in Section 6.

There are a number of procedures that might be selected to test the hypothesis found in
(4.1). The Pólya tree procedure, outlined in Chen and Hanson (2014), is quite flexible and
powerful, and thus we opt to use it in what follows. However, any other procedure that is able
to formally test the hypothesis in (4.1) is completely valid. Just as with Chen and Hanson’s
(2014) method, most methods employed to test (4.1) will produce a “p-value.” We use the
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“p-values” as a validation tool, and thus there is no guarantee that Type 1 error rates are
preserved. That said, the simulation in the Section 5.2 suggests that error rates are not far
from the size of the test.

5. Simulation studies. In this section we detail two simulation studies carried out to ex-
plore the RAID procedure’s ability to detect interactions. The first is based on a toy example
that is included to provide insight into each of the three steps of our approach. The second
is a more realistic setting that is based on the covariate structure found in the osteonecrosis
data set. In both simulation studies a continuous response variable is used, even though the
response in the osteonecrosis study is ordinal. This was done so that we could compare our
approach to other procedures found in the literature. As far as we are aware, no other proce-
dure is able to accommodate an ordinal response. This highlights the “model-free” property
of our approach.

In order to connect Y to X through π(ρm | Y ,X), we fit the following particular case of
model (3.1) to each generated synthetic data set in both simulation studies:

Yi | μ�,σ �, si
ind∼ N

(
μ�

si
, σ �

si

)
for i = 1, . . . ,m,

(
μ�

�, σ
�
�

) iid∼ N
(
μ0, σ

2
0
) × Unif(0,A) for � = 1, . . . , km,(5.1)

ρm | X ∼ RPMX(η),

with μ0 ∼ N(0,102), σ0 ∼ Unif(0,10) and A = 1. For the RPMX(η) we used the PPMx
with cohesion c(S) = M × (|S| − 1)! connecting the partition model to that induced by a
Dirichlet process (DP) mixture and the “rich get richer” property (i.e., a model that favors
a small number of large clusters). M has connections with the DP dispersion parameter,
and we used M = 1. For the similarity we employed the auxiliary similarity function (see
Müller, Quintana and Rosner (2011), Page and Quintana (2018)). As a result, for qualitative
variables, q(· | ξ �) and q(ξ � | η) correspond to multinomial and Dirichlet density functions,
respectively, and for continuous variables they take on a Gaussian and Gaussian-Inverse-
Gamma density functions. Thus, for qualitative covariates η is a vector of Dirichlet shape
parameters that we set to 0.1, and for continuous covariates, η corresponds to the m0 = center,
k0 = scale, ν0 = shape and κ0 = rate parameters of Gaussian-Inverse-Gamma distribution.
After standardizing continuous covariates, we employed m0 = 0, k0 = 0.5, ν0 = 1, κ0 = 2. In
this model the prior parameters that seem to have the most influence over π(ρm | Y ,X) are
A and k0. These parameters determine how much weight is placed on Y or X when forming
clusters. We explore sensitivity to the specification of these prior parameters in Section 6.1.

5.1. Simulation study: Toy example. In this simulation, data sets consisting of three bi-
nary covariates are generated (i.e., Xi ∈ {0,1}, for i = 1,2,3). The response distribution
f (Y | X1,X2,X3) is made to explicitly depend on X = (X1,X2,X3) in the three ways that
are listed in Table 4. Each row of the table represents a possible covariate combination, and
the columns correspond to a particular response distribution. Note first from the table that
only X1 and X2 influence the distribution of Y , and they do so multiplicatively (i.e., they
interact in the linear model sense). As a control, we consider the case where the distribution
of Y does not depend on X, in any way, which is denoted by f0(Y | X). From Table 4 note
that f0(Y | X) corresponds to a standard normal regardless of the values of X. For f1(Y | X),
the variance and shape remain the same regardless of the value of X, but the mean changes
based on the values of X1 and X2. For f2(Y | X), the mean and shape remain the same,
but the variance changes, depending on the values of X1 and X2. Lastly, for f3(Y | X) the
mean and variance do not change, but the values X1 and X2 influence the shape. The scenario
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TABLE 4
List of distributions used in the simulation study. Here, N(a,b) denotes a normal distribution with mean a and
standard deviation b, SN(a, b, c) denotes a skew-normal distribution with location (a = 10), scale (b = 1) and

skew (c = 20) parameters. For the two-component mixture we set p1 = p2 = 0.5, s2
1 = s2

2 = 1/16 and

m1 = −m2 = √
15/4

X1 X2 X3 f0(Y | X) f1(Y | X) f2(Y | X) f3(Y | X)

1 1 1 N(0,1) N(0,1) N(0,1) N(0,1)

1 1 0 N(0,1) N(0,1) N(0,1) N(0,1)

1 0 1 N(0,1) N(2,1) N(0,3) SN(a, b, c)

1 0 0 N(0,1) N(2,1) N(0,3) SN(a, b, c)

0 1 1 N(0,1) N(0,1) N(0,1) N(0,1)

0 1 0 N(0,1) N(0,1) N(0,1) N(0,1)

0 0 1 N(0,1) N(4,1) N(0,6)
∑2

j=1 pjN(mj , s2
j )

0 0 0 N(0,1) N(4,1) N(0,6)
∑2

j=1 pjN(mj , s2
j )

under f1(Y | X) follows the traditional definition of an interaction and thus can be detected
using any number of procedures. The other two scenarios would not be detected, even if an
interaction between X1 and X2 is explicitly included in a linear model.

For each scenario we generated 1000 data sets each with 500 observations and fit model
(5.1). At each MCMC iterate of ρm, cluster-specific association rules were gathered using
the apriori function found in the arules package (Hahsler et al. (2015)) of the statis-
tical software R (R Core Team (2017)). This function is based on the a priori algorithm of
Agrawal et al. (1996). We considered association rules from clusters that contained at least
10 subjects/experimental units. After association rules were gathered using a lower bound
support of 0.25 and confidence of 0.5, we identified the covariate tandem that had the highest
total support and confidence. If this resulted in a tie, then both covariate tandems were con-
sidered. Then, for each association rule the Pólya tree-based testing procedure of Chen and
Hanson (2014) was used to test the hypothesis in (4.1). The X variable absent from the asso-
ciation rule was fixed to its empirical median value. The p-values from this testing procedure
are derived from permutation tests and values in Table 5 are based on 500 permutations.

Lastly, since the number of posterior predictive draws collected to test (4.1) can be selected
somewhat arbitrarily, the adage “statistical vs. practical significance” is important here, as
it would be undesirable to reject (4.1) for differences among predictive densities that are
inconsequential. Thus, when carrying out the test of Chen and Hanson (2014), we considered
N ∈ {50,100,250} posterior predictive draws.

In Section 1.2 of the online Supplementary Material (Page, Quintana and Rosner (2021a)),
we provide more details of the simulation results for each of the 24 possible association rules,
but here we focus on results for testing (4.1) which are found in Table 5. Each column of the

TABLE 5
p-values averaged over 1000 synthetic datasets from testing hypothesis (4.1) using the Pólya tree method of

Chen and Hanson (2014)

N = 50 N = 100 N = 250

arules f0 f1 f2 f3 f0 f1 f2 f3 f0 f1 f2 f3

X1 ⇔ X2 0.53 0.00 0.00 0.02 0.48 0.00 0.00 0.00 0.44 0.00 0.00 0.00
X1 ⇔ X3 0.47 0.54 0.50 0.48 0.51 0.38 0.50 0.45 0.44 0.37 0.43 0.41
X2 ⇔ X3 0.49 0.00 0.00 0.36 0.50 0.00 0.00 0.25 0.43 0.00 0.00 0.14
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table contains the p-values produced by the Chen and Hanson (2014) Pólya tree method
averaged across the 1000 data sets. The Monte Carlo errors, associated with entries found in
Table 5, are all small with the largest being 0.01. From Table 5 it seems that, for this data-
generating mechanism, it is sufficient to only consider 50 posterior predictive draws when
testing the hypothesis for all three interaction types.

From Table 5 it also seems that, under f0, the average p-value is large in all cases, indi-
cating that the posterior predictive densities in (4.1) are essentially the same regardless of the
number of posterior predictive draws and association rule. This was expected. Similarly, X1
⇔ X3 under f1, f2 and f3 and X2 ⇔ X3 under f3 produced large p-values which was also
expected. Since there is an interaction between X1 and X2, the small p-values associated
with X1 ⇔ X2 under f1, f2, and f3 were expected. However, notice that, under f1 and f2,
the association rule that includes X2 and X3 also produced small p-values for (4.1). This was
unexpected. Since X2 and X3 do not interact, fixing X1 makes it so that (4.1) amounts to
testing for the “marginal effect” of X2. Thus, small p-values associated with hypothesis (4.1)
can indicate an interaction or a marginal effect. To correctly determine which—further testing
can be carried out or the posterior predictive densities being compared in (4.1)—should be
carefully examined. Here, we carried out the later by providing the posterior predictive den-
sities in Figure 1. Estimated densities in the figure correspond to the first synthetic data set
generated based on f1. The first row of the figure corresponds to densities when X3 is fixed,
the second row when X2 is fixed and the third when X1 is fixed. Notice that the densities
in the first row are noticeably different and clearly depend on the levels of X1 and X2 (i.e.,
there is an interaction between X1 and X2). Close inspection of rows 2 and 3 of the figure
shows that differences seen in the posterior predictive densities are not due to X3 at all, but
entirely to X1 for the second row and X2 for the third. Thus, graphs like Figure 1 are able
to help determine if interactions correspond to “main effects” or “interaction effects,” as they
are typically defined in a linear model setting. Ultimately, the take-home message of Table 5
and Figure 1 is that the exploratory procedure is able to identify that X1 and X2 interact
regardless of the influence that they have on the distribution of Y .

Next, we compared the performance of our method to five alternative approaches that de-
tect interactions. To this end, to each generated data set we applied the following procedures:

1. Linear model with all main effects and two-way interactions;
2. Spike & slab model of Ishwaran and Rao (2005) with all main effects and two-way

interactions;
3. The hierarchical group-Lasso (hgLASSO) procedure in Lim and Hastie (2015);
4. The BART procedure detailed in Kapelner and Bleich (2016);
5. Procedure based on XGBoost (Karbowiak and Biecek (2019)).

Each of the listed methods were fit in R using the following: lm function for linear model, the
spikeslab package (Ishwaran, Rao and Kogalur (2013)) for spike & slab, the glinter-
net package (Lim and Hastie (2019)) for hgLASSO, the bartMachine package (Kapelner
and Bleich (2016)) for BART and the xgboost package (Chen et al. (2019)) coupled with
the EIX package (Karbowiak and Biecek (2019)) for XGBoost. To apply the procedures just
listed, some type of user input was required to confirm that an interaction was detected. For
the sake of conciseness, we provide specific details of how procedures were implemented in
Section 1.1 of the online Supplementary Material (Page, Quintana and Rosner (2021a)).

To study the impact that the RPM prior might have on results, we also used the RAID
procedure coupled with the induced random partition distribution from the ANOVA DDP. The
particular ANOVA DDP we employed is that for which the atoms were made to depend on
group membership (as defined by the three categorical covariates), but weights did not. Lastly,
we checked the sensitivity of results to posterior convergence by identifying interactions
based on an MCMC chain that was run for only 500 iterations
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FIG. 1. Posterior predictive densities for the six combinations of X1, X2 and X3 based on a synthetic data set
used in the simulation study.

The values listed in Table 6 are the proportion of data sets for which the interaction be-
tween X1 and X2 was correctly identified. The Monte Carlo standard errors associated with
proportions in Table 6 were all very small with 0.09 (associated with “RAID with ANOVA
DDP, N = 100”) being the largest. Notice that, when no interaction was present, all proce-
dures performed similarly, except for XGBoost and RAID with ANOVA DDP. These two
procedures seemed to be more liberal in their interaction detection. When the interaction was
based on the expectation of the response distribution (column f1), all procedures detected
the interaction except for XGBoost. However, if the interaction was based on the variance
or shape of the response distribution, the RAID procedure with PPMx was the only one that
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TABLE 6
Percent of data sets in the simulation study for which the interaction between X1

and X2 was correctly identified

Procedure f0 f1 f2 f3

Linear Model 0.04 1.00 0.05 0.06
Spike & Slab 0.08 1.00 0.05 0.09
hgLASSO 0.09 1.00 0.12 0.10
BART 0.00 0.99 0.00 0.00
XGBoost 0.27 0.54 0.37 0.40
RAID with ANOVA DDP, N = 50 0.19 1.00 1.00 0.23
RAID with ANOVA DDP, N = 100 0.44 1.00 1.00 0.47
RAID with ANOVA DDP, N = 250 0.61 1.00 1.00 0.87
RAID with PPMx, N = 50 0.06 1.00 1.00 0.96
RAID with PPMx, N = 100 0.04 1.00 1.00 1.00
RAID with PPMx, N = 250 0.08 1.00 1.00 1.00

Results with only 500 MCMC iterates

RAID with PPMx, N = 50 0.10 1.00 1.00 0.23
RAID with PPMx, N = 100 0.28 1.00 1.00 0.73
RAID with PPMx, N = 250 0.13 1.00 1.00 1.00

consistently detected it. Lastly, the RAID procedure still performed surprisingly well, even
when the number of collected MCMC iterates was small.

5.2. Simulation study: Osteonecrosis study covariate structure. We now describe a sim-
ulation study where the number of covariates in each synthetic data set is similar to that found
in the osteonecrosis study. More specifically, each synthetic data set contained 21 covariates,
19 of which were continuous and two binary. The binary covariate values were generated
using a Bernoulli distribution with probability of success equal to 0.5. The continuous co-
variates were generated using a continuous uniform distribution with support (−1,1). We
created interactions that impact the mean, spread and shape of the response distribution in
two ways. The first employed the setup established in Table 4, except that instead of one
noise covariate that was categorical, there are 19 continuous noise covariates.

The second method of generating data sets was based on interactions that depend on con-
tinuous covariates. This was done by using the following data generating mechanisms to
generate response values:

• Y ∼ N(5X1X2, σ ) (interaction affecting mean);
• Y ∼ N(0, exp{5X1X2}σ) (interaction affecting spread);
• Y ∼ π(X1,X2)N(0, σ ) + (1 − π(X1,X2))[0.5N(−0.5, σ ) + 0.5N(0.5, σ )] where

π(X1,X2) = 1/(1 + exp{200X1X2}) (interaction affecting shape).

For this setting X1 and X2 were continuous covariates generated using a uniform distribu-
tion with support (−1,1). Similar to what was done before, 19 “noise” covariates were also
included, 17 of which were continuous (coming from a uniform distribution with support
(−1,1)) and two binary (coming from a Bernoulli distribution with probability of success
equal to 0.5).

We explored how the ratio of signal to noise affected the ability to detect interactions
by considering σ ∈ {10−3,10−2,10−1,100}. Finally, we also considered the case when only
60% and 25% of observations exhibited the interaction. This was done by using a N(0,1)

distribution to generate response values for 40% (or 75%) of the units.
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To each synthetic data set, the RAID PPMx procedure was fit along with the six com-
petitors introduced in the previous section. For each procedure we recorded if the interaction
was detected (True Positive) and also enumerated the number of falsely detected interac-
tions (False Positives). We briefly note that, since association rules require discrete vari-
ables, before employing association rules for each cluster, the continuous covariates were
dichotomized such that an equal number of observations belonged to each interval.

Here, we only describe results for the case when the interaction was present in 100% of
the population and include results when the interaction was present in only 60% or 25%
of the population in the online Supplementary Material (see Figures S.1–S.4). Trends were
similar in all scenarios, except that it became more challenging to detect interactions as the
percent of population that exhibits interaction decreased, with the RAID method being the
least impacted when the interaction only applies to a subset of the population.

In Figure 2, notice that, except for XGBoost, all methods did reasonably well in recovering
the interaction that affects the mean between two categorical covariates, with the RAID and
LM methods decaying more when the signal-to-noise ratio decreased. When interactions
based on continuous covariates affected mean, the RAID method did the worst (only detecting
the interaction in about 50% of the synthetic datasets). However, when interactions affected
spread or shape, the RAID procedure is the only method that was able to detect the interaction
with any type of regularity. The BART method won when interaction between continuous
covariates affected the spread, and the XGBoost method tended to perform the worst.

Figure 3 displays the false positives. It seems that the spike & slab and RAID procedures
tended to produce the most amount of false positives, while the LASSO and BART method
did reasonably well in avoiding this. Upon further investigation, many of the false positives
detected by the RAID procedure included one of X1 or X2 (covariates that participated in the

FIG. 2. Results from the second simulation study: Percentage of synthetic datasets for which the interaction was
detected. In each figure the top row corresponds to an interaction that is based on categorical covariates and the
bottom row to continuous covariates.
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FIG. 3. Results from the second simulation study: Average number of falsely detected interactions. In each figure
the top row corresponds to an interaction that is based on categorical covariates and the bottom row to continuous
covariates.

interaction). In fact, if interactions that included either X1 or X2 were not classified as false
positives, then the number of false positives detected by the RAID procedure, averaged over
all data generating scenarios, was only 1.01. Thus, as discussed in the previous section, the
RAID procedure detects any combination of covariates that affect the response distribution
in some way.

6. Interactions in the osteonecrosis study. We now turn our attention to the osteonecro-
sis study. Since the response is an ordinal variable, it is natural to consider latent variable
ordinal data models, as those described in Bao and Hanson (2015) and in Kottas, Müller and
Quintana (2005). These types of models are clearly more complex than model (3.1), but they
permit demonstrating the flexibility of the exploratory procedure. In fact, any data model
can be employed so long as the response is connected to the covariates through a dependent
random partition model (or analogous predictor dependent clustering procedures).

For the sake of completeness, we detail the ordinal model in its entirety. Let Yi ∈
{0,1,2,3,4} be the ordinal response measured on the ith patient i = 1, . . . ,234. Further,
let Xi = (Xi1, . . . ,Xi22) denote subject i’s 22-dimensional covariate vector. As is done in
Bao and Hanson (2015), real-valued latent scores Z1, . . . ,Zn are introduced such that, for
−∞ = γ0 < γ1 < · · ·γ4 < γ5 = ∞,

Yi = � ⇔ γ� < Zi ≤ γ�+1 for � = 0, . . . ,4.

The appeal of employing the methods described in Bao and Hanson (2015) and Kottas, Müller
and Quintana (2005) is that the values selected for γ are immaterial, so long as the model is
flexible enough to assign sufficient probability mass to each (γ�, γ�+1] interval. Since assign-
ing a PPMx prior to ρm results in modeling the latent ordinal scores with a mixture (which
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is essentially the same data model arising from marginalizing the random measure in the ap-
proach by Bao and Hanson (2015)), we conclude that the model we specify affords sufficient
flexibility and, therefore, the γ can be selected arbitrarily. In light of this, we set γ1 = 0,
γ2 = 1/3, γ3 = 2/3, γ4 = 3/3. The remainder of the model is expressed hierarchically after
introducing latent cluster labels s1, . . . , sn

Zi | μ�,σ 2�, si ∼ N
(
μ�

si
, σ 2�

si

)
,

(
μ�

j , σ
�
j

) ∼ N
(
μ0, σ

2
0
) × Unif(0,A),(6.1)

Pr(ρ | X) ∝
k∏

j=1

c(Sj )g
(
X�

j

)
,

where c(Sj ) and g(X�
j ) are set to functions detailed in Section 3.1. Further, we assume μ0 ∼

N(0,102), σ0 ∼ Unif(0,10) and set A = 0.1.
This model was fit to the osteonecrosis data by collecting 1000 MCMC iterates after dis-

carding the first 10,000 as burn-in and thinning by 15. Afterward, we identified association
rules for each MCMC iterate of ρm. Covariate values for those variables not identified in
the association rule are set to the overall median. Testing (4.1) was done by using Chen and
Hanson (2014)’s method based on 500 permutations and 100 posterior predictive draws. This
testing procedure was replicated five times with a unique set of 100 random posterior pre-
dictive draws, and the average p-value is reported. (We stress again that p-values are used
only as a validation summary, and no notion of Type I error is implied.) As in the simulation
study, each continuous covariate was dichotomized such that an equal number of observations
belonged to each interval when employing association rules. Also, we explored the impact
that trichotomizing continuous covariates might have on the RAID exploratory procedure.
Results are provided in Section 2.1 of the online Supplementary Material (Page, Quintana
and Rosner (2021a)).

Since the study was conducted specifically to explore if dexamethasone clearance (DexCl)
and/or asparaginase (AsparaginaseAntibodyAUC) interact with other physiological measure-
ments, we restrict attention to those association rules that contain at least one of these two
covariates. Results for interactions that appeared in at least 50% of the MCMC iterates are
provided in Table 7. The column “Pr” corresponds to the percent of MCMC iterates that
identified the particular association rule, “Supp.” is the support, “Conf.” the confidence, |S|
corresponds to average cluster size from which association rule was identified and “p-value”
indicates the result of testing (4.1). Details associated with the “Prior#” column are provided
in Section 6.1. Notice that DexClWk07 interacts with LowRisk and AlbuminWk07 while

TABLE 7
Association rules from the osteonecrosis data with continuous covariates being dichotomized. Here, only

association rules that contain either DexClwk07, DexClwk08, or AsparaginaseAntibodyAUC are considered

Association Rule Pr Supp. Conf. |S| p-value Prior#

DexClWk07 ⇔ LowRisk 1.00 0.62 0.91 43.44 0.00 16
DexClWk07 ⇔ AlbuminWk07 0.99 0.58 0.85 39.65 0.01 15
AsparaginaseAntibodyAUC ⇔ AlbuminWk07 0.93 0.84 0.95 39.35 0.00 14
AsparaginaseAntibodyAUC ⇔ HDLWk07 0.81 0.72 1.00 10.40 0.01 7
AsparaginaseAntibodyAUC ⇔ LowRisk 0.81 0.87 0.98 40.55 0.18 17
AsparaginaseAntibodyAUC ⇔ LDLWk08 0.55 0.53 0.88 15.71 0.00 6
DexClWk08 ⇔ HDLWk08 0.53 0.51 0.88 16.36 0.00 8
DexClWk08 ⇔ AlbuminWk08 0.50 0.83 0.98 10.66 0.85 3
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FIG. 4. Posterior predictive densities for the latent variable z and used in hypothesis test (4.1) for the first four
association rules in Table 7 that do not include LowRisk. The vertical lines correspond to γ1, . . . , γ4.

DexClWk08 interacts with HDLWk08. On the other hand, Asparaginase seems to interact
with AlbuminWk07, HDLWk07 and LDLWk08. Figure 4 contains the posterior predictive
densities corresponding to the first four association rules listed in Table 7 that do not con-
tain LowRisk. Interestingly, note that the interaction between AlbuminWk07 and Asparag-
inaseAntibodyAUC influences the shape of the predictive densities, verifying that there is
indeed an interaction between them and that the interaction seems to impact the shape of the
response distribution (as evidenced by changes in shape of the predictive distributions).

Being able to interpret results at the latent level is not always straightforward. Thus, it
would be appealing to determine how interactions influence the risk of osteonecrosis. Table 8
contains predictive probabilities associated with each osteonecrosis grade for specific levels
of covariates found in interactions displayed in Figure 4 that contain DexCl. It appears that
low level of DexCl results in higher risk of grade 2 or higher osteonecrosis, but the exact risk
depends on the levels of the other covariates ( AlbuminWk07 and HDLWk08). The combina-
tion of low DexClWk07 and high AlbuminWk07 results in the highest risk of osteonecrosis.
This leads one to hypothesize that a three-way interaction between Albumin, HDL and DexCl
may be present. We explored this by testing a version of (4.1) that includes posterior predic-
tive densities for all possible combinations of the three covariates (eight in total). Doing this
resulted in rejecting the null (with a p-value of 0) that all densities are equal, and, hence, we
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TABLE 8
Posterior probabilities for each severity grade of osteonecrosis corresponding to two association rules found in

Table 7

Osteonecrosis Grade

Covariates 0 1 2 3 4

AlbuminWk07: L, DexClWk07: L 0.124 0.818 0.058 0.000 0.000
AlbuminWk07: L, DexClWk07: H 0.193 0.805 0.002 0.000 0.000
AlbuminWk07: H, DexClWk07: L 0.282 0.643 0.061 0.014 0.000
AlbuminWk07: H, DexClWk07: H 0.414 0.569 0.017 0.000 0.000

DexClWk08: L, HDLWk08: L 0.200 0.799 0.001 0.000 0.000
DexClWk08: L, HDLWk08: H 0.195 0.805 0.000 0.000 0.000
DexClWk08: H, HDLWk08: L 0.287 0.682 0.030 0.001 0.000
DexClWk08: H, HDLWk08: H 0.330 0.667 0.003 0.000 0.000

conclude that a three-way interaction exists. More details are provided in Section 2.2 of the
online Supplementary Material (Page, Quintana and Rosner (2021a)).

Section 2.3 of the online Supplementary Material also provides details on how the RAID
procedure can accommodate the temporal structure that exists among the covariates through
the PPMx prior. This is done by considering a multivariate similarity. As can bee seen in
Section 2.3 of the online Supplementary Material, including temporal dependence in the
partition prior affects partition configuration and, as a result, interactions that are identified
by the RAID procedure.

6.1. Sensitivity to prior specification. Even though we developed the RAID procedure
to be as automatized as possible (after standardizing covariates and possibly the response),
“tuning” parameters that may affect the list of possible interactions exist. Those that are most
influential are prior parameter specifications that have direct impact on π(ρm | Y ,X). In Sec-
tion 5 we mentioned that, for model (5.1), these are A and k0, as they regulate the influence
that Y and X have on cluster formation. Note that as A → 0, clusters become more hetero-
geneous with respect to Y while as k0 → 0 clusters become more heterogeneous with respect
to X. To explore sensitivity to these three prior specifications, we ran the RAID procedure
for the osteonecrosis data based on A ∈ {0.1,1,10} and k0 ∈ {0.1,1,10}. Since the cohesion
function also has an effect on π(ρm | Y ,X), we ran the RAID procedure using c(Sj ) = 1 (a
uniform type cohesion function) in addition to c(Sj ) = M × (|S| − 1)!. This resulted in 18
prior configurations and, as a result, 18 runs of the RAID procedure. On average, it took 15
minutes to apply the RAID procedure to each of the 18 prior configurations. In Section 2.4 of
the online Supplementary Material (Page, Quintana and Rosner (2021a)), we provide Tables
S.5-S.22 that list the potential interactions for each of the separate 18 runs. Here, we briefly
summarize the results. Values in the column labeled “Prior#” in Table 7 are the number of
prior configurations that detected the corresponding interaction. Counting up the total num-
ber of unique interactions detected across the 18 runs of the RAID procedure resulted in 23
unique interactions. Each of the interactions listed in Table 7 were among the unique 23.
There was a general agreement in the interactions detected among the 18 runs with four of
the interactions in Table 7 appearing in the majority of the prior configurations. Overall, it
seems that results are fairly robust to prior specifications.

Lastly, as a type of follow-up analysis, using the polr function found in the MASS R-
package (Venables and Ripley (2002)), we fit an ordered logistic regression model that in-
cluded all eight two-way interactions listed in Table 7 and their corresponding main effects
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along with the three-way interaction detailed in Section 2.2 of the online Supplementary Ma-
terial. (We remark that fitting a saturated ordered logistic regression model with all two-way
interactions for these data is not possible.) This model did provide some evidence to suggest
that an interaction between DexClWk08 and HDLWk08 along with AsparaginaseAn-
tibodyAUC and HDLWk07 was present in addition to the three-way interaction but failed
to identify any of the other interactions. This suggests that the added flexibility of our ex-
ploratory approach may be useful to detect interactions that would not be possible under
more restricted alternatives.

7. Conclusions. We have detailed an exploratory procedure that, in a general way, is
able to identify interactions. The definition of interaction that we espouse is more general than
that typically associated with linear models. Here, we conceptualize an interaction as influ-
encing any aspect of the response distribution rather than focusing solely on the first moment.
Further, the procedure is able to identify interactions without a priori information regarding
which (multiplicative) effects to include in a data model. This was seen when applying the
procedure to the osteonecrosis data set. In the application, relationships that were known to
exist (e.g., Low DexCl and higher risk of osteonecrosis) were identified without considering
them explicitly in the procedure. In addition, a three-way interaction, also not explicitly in-
cluded in the data model, was highlighted (see Section 2.2 Supplementary Material). This
interaction was not previously known by the investigators, and its scientific relevance has yet
to be determined.

We also demonstrated that the procedure can be easily employed regardless of the type
of response being measured. Indeed, the procedure is essentially “data model free,” as it
can be employed regardless of the data model so long as some type of random partition
model is employed. Note, however, that our exploratory procedure only identifies potential
interactions. That is, it does not estimate their effect. If this is desired, then any number of
statistical procedures that include the specific covariates identified by our procedure can be
employed (i.e., some form of regression).

One limitation of the RAID procedure (which is more an MCMC limitation) is that com-
putation associated with the PPMx does not tend to scale well as p and/or n grows. Future
research will be dedicated to implementing methods in the RAID procedure that permits it to
scale well.

Finally, we provide some general recommendations when employing the RAID procedure.
For the first step we recommend using the PPMx as the RPM. To automate the prior spec-
ification of model (5.1), we suggest standardizing the response and covariates and setting
A = 0.5 and k0 = 0.5. This essentially puts equal weight on Y and X when forming clus-
ters. Decisions associated with step two determine how big a “net” one wants to cast when
searching for interactions with the understanding that a larger “net” could result in more false
positives. Decreasing support and confidence will cast a larger “net” as will decreasing the
number of MCMC iterates in which an association must appear. Informal explorations led us
to set support to 0.25, confidence of 0.5 and that a particular association rule should appear
in 50% of MCMC iterates before being formally considered. For step three we suggest using
100 posterior predictive draws when comparing predictive densities and a cut-off of 0.01 for
“p-values” if the Chen and Hanson (2014) method is used. This is somewhat arbitrary, but
seemed to identify interactions well in the simulations. Lastly, we recommend using posterior
predictive densities to visualize the interactions. Doing so will highlight how the interaction
is affecting the response distribution, be it a shift in expectation as in Figure 1 or a change
in shape as in Figure 4. If it is determined that the interaction affects the expectation of the
response distribution, then a follow-up analysis to quantify interaction effects can be car-
ried out using generalized linear models. If the interaction affects the response distribution in
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some other way, then formal additional analysis is not available and quantifying the interac-
tion effects will require other (perhaps ad-hoc) approaches similar to our approach with the
osteonecrosis data set.
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SUPPLEMENTARY MATERIAL

Supplement to “Discovering interactions using covariate informed random partition
models” (DOI: 10.1214/20-AOAS1372SUPPA; .pdf). Supplement contains additional details
and results associated with simulations studies and the osteonecrosis application.

Computer codes for ‘Discovering interactions using covariate informed random par-
tition models” (DOI: 10.1214/20-AOAS1372SUPPB; .zip). R-scripts for methods described
in this paper and the osteonecrosis dataset.
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