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Abstract

In studies where data are generated from multiple locations or sources it is common
for there to exist observations that are quite unlike the majority. Motivated by the
application of establishing a reference value in an inter-laboratory setting when outlying
labs are present, we propose a local contamination model that is able to accommodate
unusual multivariate realizations in a flexible way. The proposed method models the
process level of a hierarchical model using a mixture with a parametric component and
a possibly non-parametric contamination. Much of the flexibility in the methodology
is achieved by allowing varying random subsets of the elements in the lab-specific mean
vectors to be allocated to the contamination component. Computational methods are
developed and the methodology is compared to three other possible approaches using
a simulation study. We apply the proposed method to a NIST/NOAA sponsored inter-
laboratory study which motivated the methodological development.

Keywords: Bayesian robustness; Component-wise classification; Local contamination; Mix-

tures; Multivariate outliers; Inter-laboratory Studies

1 Introduction

Random effects or multi-level models are commonly used to model data that have a hier-

archical or nested structure. These types of models are appealing because of their wide

applicability and the availability of estimation and inference for subject-specific and global

parameters. As with many statistical procedures, estimation and inference available from
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these models are sensitive to the presence of observations that are unlike the majority. If the

data have a multivariate structure, then handling outliers can be even more complicated as

observation vectors can be composed of a combination of elements, some of which are similar

in magnitude to the majority of other observations and some of which are outlying.

As an example, consider a NIST/NOAA sponsored inter-laboratory study conducted to as-

sess the quality of trace element measurements in the marine mammal population. The 33

participating laboratories were instructed to produce 5 replicate measurements of the con-

centration of 15 trace elements in a sample of marine mammal tissue. Figure 1 provides

boxplots of measured concentrations of arsenic (As) and selenium (Se) where each boxplot

corresponds to a lab. Notice that lab 18 recorded concentrations for both trace elements

that are much larger than the other labs. Conversely, Lab 17 reported concentrations for Se

that are larger than the majority of the labs, but the concentrations measured for As seem

quite reasonable relative to the majority of the other labs. In light of this, there is a need

to develop methods that are able to handle multivariate outliers in a flexible way.

There is a large literature devoted to the development of statistical methodologies that are

robust to the presence of outliers. Rocke (1983), Mandel (1995) and Bednarski and Zontek

(1996) handle outliers by proposing robust estimators, such as M-estimators or estimators

resulting from Frèchet differentiable functionals. Muller and Uhlig (2001) and Lischer (1996)

propose estimators based on the differences between observations. Another approach is to

discard all measurements that are classified as outliers via a detection method such as those

proposed in Peña and Prieto (2001) and Penny and Jolliffe (2001). However, the uncertainty

associated with outlier detection is not considered. Song et al. (2007) provide an example

of accommodating outliers by using heavy-tailed distributions. Although the fatter tails of

the t-distribution more readily accommodate outliers compared to a Gaussian distribution,
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Figure 1: Boxplots for concentrations of As and Se measured in the NIST/NOAA sponsored
inter-laboratory study and recorded as mass fraction mg per gram

it still is fairly restrictive in that its shape is symmetric and uni-modal.

Introducing some distributional perturbation by way of a finite mixture is another approach.

Box and Tiao (1968) first proposed this method and used a two-component mixture to ac-

commodate outliers. Approaches that use mixtures of some kind can be quite flexible but

typically classify an entire multivariate object as being an outlier or not.

In this article we develop a Bayesian methodology that allows the different elements of a mul-

tivariate vector to vary in their outlier status, while accommodating uncertainty in outlier

classification in estimation and inferences. The general idea is to introduce some distribu-

tional contamination (Bayarri and Morales (2003)) to accommodate multivariate outliers.

This is done by constructing a hierarchical model where the process is modeled with a mix-

ture of mixtures. A majority (non-outlying) component is modeled by a multivariate normal,
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while the other component corresponds to unusual observations and is modeled with a finite

mixture. Much of the flexibility in the methodology is achieved by allowing allocation to the

non-Gaussian component to vary for the different vector elements. One might think of this

as a type of local clustering of the location/source mean vectors. The notion of local clus-

tering or clustering multivariate objects on a subset of attributes has been introduced in the

literature. Specifically, Dunson (2009) uses the local clustering idea to choose a prior for an

unknown random effects distribution within a hierarchical model and Hoff (2006) develops

a model-based clustering approach that clusters a multivariate vector of attributes using a

subset of the attributes.

The methods developed here are applicable to any study in which multivariate measurements

arising from different studies are to be combined. This could include, for example, meta-

analysis and interlaboratory studies. For clarity and ease of exposition we motivate ideas

from an inter-laboratory perspective. Because of this we provide a very brief introduction to

inter-laboratory studies here. These studies are conducted to ensure measurement capabil-

ity for commerce, evaluate national and international equivalence of measure, and validate

measurement devices and methods or standard materials. Typically, the overarching goal in

the analysis of data produced by inter-laboratory studies is to establish a reference value,

which can sometimes be thought of as an estimate of a measurand (quantity intended to

be measured), and estimate its uncertainty. To determine a “degree of equivalence” each

laboratory’s measurements are compared to the reference value. This analysis is usually

carried out under the guidelines set forth in The Guide to the Expression of Uncertainty in

Measurement (GUM) created by the International Organization of Standardization (ISO).

Since its inception criticisms and alternative approaches to estimating a reference value have

been proposed in the literature (Gleser (1998), Rukhin and Vangel (1998), Rukhin (2007)

and Toman (2007)).
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In what follows, Section 2 provides a detailed description of the model and Section 3 develops

computational methods. Section 4 describes a simulation study conducted to compare the

performance of the proposed method to three reasonable alternatives. Section 5 provides an

example using a NIST/NOAA marine mammal inter-laboratory data set. In Section 6 we

make conclusions.

2 Description of the Local Contamination Model

Though we focus on an inter-laboratory application for clarity, the methodology can be

implemented in a more general setting. The proposed model will be referred to as a local

contamination (LC) model. We assume that the replicates for each laboratory vary accord-

ing to a normal distribution and that if a laboratory makes an unusual measurement for a

particular element (compared to the rest of the labs) it will continue to do so for that ele-

ment. However, within laboratory outliers can be handled in a fairly straightforward manner

through the use of a heavy tailed residual density such as a multivariate t distribution (e.g.,

Section 5.4). For sake of simplicity and ease of exposition we describe the LC model with a

Gaussian residual distribution.

Let yij = (yij1, yij2, . . . , yijp)
′ be the jth vector of p measurements taken by the ith laboratory

with j = 1, . . . , ni and i = 1, . . . ,m. Assume that

yij
ind∼ Np(µi,Σi) (1)

with µi = (µi1, µi2, . . . , µip)
′ a lab-specific mean and Σi a lab-specific covariance which we

model with an inverse-Wishart (i.e. Σi ∼ IW (v,A)). For studies where measurements are
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physically constrained to be nonnegative one can simply log-transform the measurements

prior to analysis.

A novel contribution of the LC model is how the µi’s are modeled. Ultimately, we model

the µi with a multivariate normal whose mean and variance allow each µi to potentially

be composed of elements that are members of a majority (non-outlying) component and

others that are members of a non majority (outlying) component which we refer to as a

contamination. This latent allocation structure is modeled by introducing classification

variables that classify the p elements of each lab mean vector µi as being part of the majority

or not. Let γi = (γi1, γi2, . . . , γip)
′ be a p dimensional vector of 0’s and 1’s such that

γik =

 1 if µik ∈Mi

0 if µik /∈Mi

where Mi is a collection of elements that make up the majority component for the ith lab,

di =
∑p

k=1 γik is the number of elements in the majority component for the ith lab and

γik
ind∼ Ber(πi) with πi

iid∼ Beta(aπ, bπ) (aπ and bπ are user supplied). πi is the prior proba-

bility that lab i falls within the majority component for a randomly-selected element. By

specifying a hyperprior for πi, we allow the data to inform about the proportion of outlying

elements. Typically, one would elicit aπ and bπ based on prior knowledge of the proportion

of outlying elements with aπ � bπ so that E(πi)� 0.5, with ideally E(πi) ≈ 1− ε for small

ε. This leads to a local ε-contaminated model.

We now introduce atoms {(µ∗h,Σ∗h);h = 0, 1, . . . , L} that are used to construct the mean

and covariance matrix corresponding to µi. The pair (µ∗0,Σ
∗
0) are the mean vector and

covariance matrix that correspond to the majority component (which makes µ∗0 of principle

interest in an inter-laboratory study analysis), while (µ∗h,Σ
∗
h) for h = 1, . . . , L correspond to
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the L clusters that make up the contamination. µ∗0 is sampled a priori from Np(m,S) while

µ∗h’s for h = 1, . . . , L are sampled independently from tp(m,S, ν) a priori. (Here tp(m,S, ν)

denotes a scaled (S) and shifted (m) p-dimensional t-distribution with ν degrees of freedom.)

Multivariate t-distributions are used to accommodate the possibility of contamination cluster

locations being highly variable. For computational purposes (detailed in Section 3) the Σ∗h’s

are diagonal matrices with diagonal entries σ∗2hk, k = 1, . . . , p. To preserve conjugacy we use

an inverse-Gamma prior σ∗2hk
ind∼ IG(aσ, bσ) for k = 1, . . . , p (values for aσ, bσ are supplied by

the user). Thus, depending on γi, the mean and covariance matrix corresponding to µi is

made up of elements from µ∗0 and Σ∗0 and/or elements from µ∗` and Σ∗` for some ` = 1, . . . , L.

The value of L actually represents an upper bound on the number of clusters that make

up the contamination. The form of the contamination is motivated by a finite Dirichlet

approximation to the Dirichlet process as proposed by Ishwaran and Zarepour (2002). As

this upper bound increases, there is convergence to a nonparameteric limit, but the finite

approximation is somewhat simpler to implement. Allowing the contamination to potentially

consist of more than one cluster provides more flexibility in handling outliers compared to

a one cluster contamination. The necessity of this flexibility can be seen in Figure 1. It is

fairly obvious that the As and Se entries of Lab 18’s mean vector will occupy a cluster of

the contamination. Also, it is possible that the As entry of Lab 26’s mean vector will be

allocated to the contamination. If this turns out to be the case, then at least two contami-

nation clusters will be necessary to accommodate the two element means.

To identify the `th contamination cluster used to construct the mean vector and covariance

matrix associated with µi we introduce an Si for each of the i = 1, . . . ,m labs. The Si’s

take on values ` = 1, . . . , L with Pr(Si = `) = ν`. For simplicity, all elements of the mean

and covariance matrix of µi that are allocated to the contamination come from the same
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contamination cluster. The vector of probability weights on the L clusters that make up the

contamination is modeled as

ν = (ν1, ν2, . . . , νL)′ ∼ Dir(α/L, . . . , α/L)

with α = 1 being fixed in the applications that we consider to favor high weights on few

clusters.

Finally, we model the µi’s independently for i = 1, . . . ,m with

µi
ind∼ Np(δγi ,Tγi)

The entries of the vector δγi depend on γik in the following way. If γik = 1, then δγik = µ∗0k,

otherwise, δγik = µ∗Sik for all k = 1, . . . , p. This structure can be succinctly written as

δγi = γi ⊗ µ∗0 + (1− γi)⊗ µ∗Si

where ⊗ denotes the Hadamard or element-wise multiplication.

Tγi is constructed in a similar fashion. Since Σ∗h, for h = 0, . . . , L are diagonal matrices Tγi

is diagonal as well. The kth entry on the diagonal of Tγi is the kth diagonal value of Σ∗0 (or

σ∗20k) if γik = 1 otherwise, it is the kth diagonal entry of Σ∗Si (or σ∗2Sik). Thus we can construct

Tγi as

Tγi = γiγ
′
i ⊗Σ∗0 + (1− γi)(1− γi)′ ⊗Σ∗Si .

Figure 2 provides a graphical representation of how the mean and covariance of µi is con-
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structed.

µi ∼ N(δγi , Tγi)

δγi Tγi
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Figure 2: Graphical display of how the mean and covariance matrix of µi is constructed.
Recall that Si = ` with probability ν` for ` = 1, . . . , L and (δγik = µ∗0k, t

2
γik

= σ∗20k) with
probability πi for i = 1, . . . ,m

Values for all parameters denoted by Roman letters need to be specified by the user. To

automate prior specification and avoid problems inherent to dealing with multivariate data

on vastily different scales, we recommend standardizing the p variables prior to analysis. If

this is done, the prior specification of m = 0 and S = Ip is natural. because the p variables

are standardized using all data (including any outliers), values for (aσ, bσ) should be chosen

so the majority of prior distribution mass associated with the σ2
hk’s is less than 1. Informal

investigation indicated that inferences from the LC procedure are fairly insensitive to the

prior specification for σ2
hk. In this paper we use an inverse-gamma distribution with mean

0.25 and standard deviation 0.5 giving Pr(σ2
hk > 1) ≈ 0.025. Following suggestions made by

Verdinelli and Wasserman (1991), to make probability of being an outlier small (≈ 0.05), we

set aπ = 9.5 and bπ = 0.5.
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3 Computation

The joint posterior distribution of the parameters in the LC model is analytically intractable.

We use a Gibbs sampler to obtain correlated draws from the posterior distribution. The full

conditional distributions which can be used to construct a Markov Chain whose stationary

distribution is the joint posterior are described. In what follows we use [θ|−] to denote the

distribution of θ conditioned on all other parameters. As an example, [µi|−] is shorthand

for [µi|{µj}j 6=i, {Σi}mi=1{γi}mi=1, {µ∗h}Lh=0, {Σ∗h}Lh=0, {πi}mi=1, {ν}L`=1, {Si}mi=1,y]. The following

full conditionals are fairly common and can be derived using routine algebra.

[µi|−] ∼ Np

([
niΣ

−1
i + T−1

γi

]−1 [
niΣ

−1
i ȳij + T−1

γi
δγi
]
,
[
niΣ

−1
i + T−1

γi

]−1
)
, (2)

[Σi|−] ∼ IW

(
ni + v,

ni∑
j=1

(yij − µi)(yij − µi)′ +A
)
, (3)

[γik|−] ∼ Ber(p∗) with p∗ =
φ(µik;µ

∗
0k, σ

2∗

0k)πi
φ(µik;µ∗0k, σ

2∗
0k)πi + φ(µik;µ∗Sik, σ

2∗
Sik

)(1− πi) , (4)

[πi|−] ∼ Beta

(
p∑

k=1

γik + a, p−
p∑

k=1

γik + b

)
, (5)

[ν|−] ∼ Dir(α∗1, . . . , α
∗
L) with α∗` =

m∑
i=1

1[Si = `] +
α

L
, ` = 1, . . . , L, (6)

where φ(·;µ, σ2) denotes a normal density with mean µ and variance σ2.

Full conditionals are also needed for the component-specific parameters. We first provide

the full conditionals for µ∗0 and Σ∗0. Here, we introduce some useful notation. Let T0:γi=0

denote the matrix that results from setting the entries of the rows and columns of the matrix

Tγi that are associated with γik = 0 for k = 1, . . . , p to zero. Similarly T0:γi=1 denotes the

matrix whose row and column entries associated with γik = 1 for k = 1, . . . , p are set to zero.

The full conditional for µ∗0 is
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[µ∗0|−] ∼ Np

[ m∑
i=1

T−1
0:γi=0 + S−1

0

]−1 [ m∑
i=1

T−1
0:γi=0µi + S−1

0 m0

]
,

[
m∑
i=1

T−1
0:γi=0 + S−1

0

]−1
 . (7)

This result is a consequence of the assumption that Σ∗0 is diagonal.

Since Σ∗0 is a diagonal we consider the σ2∗

0k’s individually for each k. The complete conditional

for the kth diagonal element of Σ∗0 is

[σ2∗

0k|−] ∼ IG

aσ +
1

2

m∑
i=1

γik,

[
1

bσ
+

1

2

m∑
i=1

γik(µik − µ∗0k)2

]−1
 . (8)

Derivations of (7) and (8) are provided in the Appendix.

To facilitate computation we use a scale mixture of normal representation of the t distri-

butions that correspond to the contamination cluster locations. This requires introduc-

ing an auxiliary variable (ω` ∼ IG(w/2, 2/w)) for each of the L contamination clusters

where w is the degrees of freedom (which we set to 4). The complete conditionals for

{(µ∗h,Σ∗h);h = 1, . . . , L} are then

[µ∗h|−] ∼ Np

 ∑
i:Si=h

(ωhT )−1
0:γi=1 + S−1

h

−1  ∑
i:Si=h

(ωhT )−1
0:γi=1µi + S−1

h mh

 ,
 ∑
i:Si=h

(ωhT )−1
0:γi=1 + S−1

h

−1 ,

(9)

[σ2∗
hk|−] ∼ IG

aσ +
1
2

∑
i:Si=h

(1− γik),
 1
bσ

+
1
2

∑
i:Si=h

(1− γik)(µik − µ∗hk)2
−1 . (10)
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The full conditional of the auxilliary variable ω is

[ωh|−] ∼ IG
(
0.5(w + p), (0.5[(µh −m)′S−1(µh −m) + w])−1

)
. (11)

The full conditional of Si is discrete with probability mass function

Pr[Si = `|−] =
φ(µi; δ`γi ,T`γi)ν`∑L
h=1φ(µi; δhγi ,Thγi)νh

for ` = 1, . . . , L. (12)

Where φ(;µ,Σ) denotes a multivariate normal density, δ`γi = γi ⊗ µ∗0 + (1 − γi) ⊗ µ∗Si=`,
and T`γi = γiγ

′
i ⊗Σ∗0 + (1− γi)(1− γi)′ ⊗Σ∗Si=`.

A Markov chain associated with the joint distribution of interest can be had by iteratively

cycling through the complete conditional distributions on an individual basis.

When using auxiliary variables for classifying in a mixture setting it is possible for chains

coming from an MCMC algorithm to mix poorly. To improve mixing, we use an adaptive-

type of Gibbs sampler (Roberts and Rosenthal (2007)). This was done by replacing p∗ in

(4) with

p∗ + exp{−0.01(t− 1)}(0.5− p∗)

where t = 1, . . . ,M denotes the tth MCMC iterate. This initially pulls p∗ to 0.5 but then

converges to (4) exponentially fast as t→∞. Since the adaptation vanishes at an exponential

rate, the necessary regularity conditions are satisfied and the algorithm converges to the

correct distribution.
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4 Simulation Study

We compare the performance of the LC model in estimating a reference vector to three

other reasonable alternatives by way of a simulation study. The simulation study consists

of generating several of multivariate data sets (with and without outlying elements) and

for each, estimating a reference vector using three competing methods and the LC model.

The four procedures were compared using frequentist metrics such as bias and mean square

error along with credible region area and coverage. In this section, we briefly describe the

competing methods, detail how data sets were generated, and provide the simulation study

results.

4.1 Description of Competing Methods

We compare the performance of the LC procedure in estimating µ∗0 to three reasonable

alternatives via a simluation study. The description of the three competitors follows.

1. The first competing method is a random effects model with random effects assumed to

originate from a MVN distribution. Specifically, yij
ind∼ Np(µi,Σ), µi

iid∼ Np(µ
∗
0,Σ0),

and µ∗0 ∼ Np(m,S). Σ and Σ0 are drawn from inverse-Wishart distributions. We

refer to this model as the MVN model.

2. The second competing method is a random effects model with random effects assumed

to originate from a multivariate t-distribution. More specifically, yij
ind∼ Np(µi,Σ),

µi
iid∼ tp(µ

∗
0,Σ0, ν), and µ∗0 ∼ Np(m,S). A uniform (0, 100) prior is used for ν.

The other parameters were assigned the same priors as in the MVN model. The t-

distribution is often used as a robust alternative to the MVN when outliers are present

and we refer to this model as the MVT model.

3. The third competing method is a random effects model with the random effects being
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modeled with an unknown density. A Dirichlet Process (DP) is used as a prior for the

unknown density. That is, yij
ind∼ Np(µi,Σ), µi ∼ P , and P ∼ DP (αP0). Here P0

follows a Np(µ
∗
0,Σ0) and µ∗0 ∼ Np(m,S). Similar to the LC model we fixed α = 1.

Other parameters were assigned the same priors as in the MVN and MVT models.

This model is very flexible in accommodating unusual observations and we refer to it

as the DP model.

4.2 Creation of Synthetic Data Sets

We consider the MVN and MVT models as a data generating mechanisms. We generate

µi vectors from a MVN or MVT distribution after fixing values for µ∗0 and Σ0. Then after

fixing Σ, lab-specific observation vectors are generated by using a MVN with mean µi and

covariance Σ and then log transformed. We used the marine mammal data set as a guide to

picking appropriate values for µ∗0, Σ0, and Σ. The marine mammal data set was also used

to choose the number of laboratories (30), the number of observations per laboratory (5),

and the dimension of the observation vectors (15).

We fix the kth entry of µ∗0 at the median of the kth element computed across all laboratories

from the marine mammal data set. Σ0 is fixed to be a diagonal matrix whose kth entry is

set by computing the variance between the empirical lab-specific means for the kth element.

For the data generation process, Σ is also a diagonal matrix whose kth entry is fixed at the

average of the lab-specific sample variances of the kth element.

For data sets containing outliers, 10 of the 30 labs are randomly selected to have outliers

in at least one entry of µi. Five of the ten have one element randomly selected to be

an outlier, two have two elements as outliers, two have five elements and one has ten ele-

ments. This outlier structure is similar to that found in the marine mammal data set. An
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outlier is generated by setting the mean for an outlying element to µ∗0k + 6σ0kk. Figure 3

provides an example of the data sets used in the simulation study with and with out outliers.

4.3 Results

Using the MVN, 500 data sets with and without outliers are generated. This is repeated

using MVT, giving a total of 2000 data sets. For each data set, posterior distributions

of µ∗0 were obtained using the four procedures. Posterior distributions are summarized by

posterior mean vectors and 15-dimensional 95% credible regions. The credible regions are 15-

dimensional rectangles formed as the product of fifteen (0.95)1/15 × 100% credible intervals,

one for each of µ∗01, . . . µ
∗
015. We refer to the posterior means as E[µ∗0|y]. To compare the

four procedures’ performance in estimating µ∗0 , we use empirical coverage ratios and credible

region volume along with two metrics related to the frequentist bias and MSE. As a type of

total absolute bias the following was computed for each procedure

bias =
1

D

D∑
d=1

(
15∑
k=1

|E[µ∗0|y]dk − µ∗0k|
)
.

Here, E[µ∗0|y]dk is the kth element of the E[µ∗0|y] and d is an index for the D = 500 data

sets that were generated. Values in the MSE column were computed using

MSE =
1

D

D∑
d=1

(
15∑
k=1

V ar[µ∗0|y]dk + (E[µ∗0|y]dk − µ∗0k)2

)
.

This might be thought of as a type of total MSE averaged over the 500 data sets. Results

can be found in Table 1.

When no outliers are present and the data are generated using the MVN model, results from
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Figure 3: Boxplots of concentrations of Se from a randomly generated data set used in the
simulation study. Plots (a) and (c) contain no outliers while plots (b) and (d) do. The data
in plots (a) and (b) are generated using the MVN model and those in plots (c) and (d) are
generated using MVT. In plot (b) two of the ten outlier labs have outlying Se values. Three
of the ten outlying labs has outlying Se values in plot (d).
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Table 1: Results from the simulation study. Entries correspond to averages computed across
the 500 generated data sets.

volume
True Model procedure coverage ×1011 bias MSE

MVN

No Outliers

MVN model 0.902 0.001 0.302 0.034
MVT model 0.908 0.002 0.318 0.038
DP model 0.916 0.003 0.316 0.038
LC model 0.890 0.001 0.311 0.035

10 Outliers

MVN model 0.890 0.647 0.799 0.156
MVT model 0.944 0.026 0.410 0.065
DP model 0.922 1.410 0.722 0.145
LC model 0.920 0.001 0.312 0.038

MVT

No Outliers

MVN model 0.926 1.500 0.406 0.065
MVT model 0.946 0.005 0.318 0.042
DP model 0.912 0.224 0.410 0.067
LC model 0.906 0.007 0.338 0.045

10 Outliers

MVN model 0.856 31.41 0.855 0.194
MVT model 0.960 0.159 0.443 0.077
DP model 0.886 19.29 0.796 0.188
LC model 0.932 0.039 0.375 0.056
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the LC procedure are very much comparable to the other four other procedures in terms of

coverage, volume, bias, and MSE. The fact that these intervals didn’t attain the nominal

95% coverage is to be expected as we are working with Bayesian posterior probability inter-

vals which have a different interpretation than confidence intervals in a finite sample setting.

When outliers are introduced, the MVN and DP models are more negatively affected than

the MVT and LC models and the LC model performs much better in all four metrics. When

the data are generated using MVT and there are no outliers the MVT model performs the

best out of the four procedures in terms of bias and MSE. This is to be expected. However,

when outliers are introduced, the LC procedure has a lower MSE and bias than the MVT. It

appears that the LC procedure has a clear advantage over the other three procedures at es-

timating µ∗0 when outlying laboratories are present. In other simulation results (not shown)

the advantages of using the LC model (in terms of smaller bias and MSE) compared to the

MVT model become more obvious as the ratio of outlying labs to participating labs increases

or as the distance between an outlying lab mean and the majority component mean increases.

Table 2: Results from the simulation study with regards to the accuracy in which the LC
model allocates elements to the contamination and the number of occupied clusters of the
contamination

clusters outlying outlying
Procedure occupied elements labs

MVN
No Outliers 2 0 0
10 Outliers 3 29 10

MVT
No Outliers 3 10 4
10 Outliers 4 35 12

To demonstrate the utility of a contamination model with more than one cluster, we report

in Table 2 several summaries of the outlying clusters identified by the LC model. At each

iteration of the MCMC algorithm we count the number of clusters that contained an ele-
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ment that had been allocated to the contamination. The ‘clusters occupied’ column reports

the median of this value across MCMC iterates and the 500 data sets. For data generated

using the MVN with outliers, approximately 3 clusters of the contamination were occupied

while 4 were occupied for data generated from MVT with outliers. We also enumerated the

total number of elements that were classified as outliers (using E(γik|y) < 0.1 as the outlier

criterion). The values found in the column ‘outlying elements’ is the median number of ele-

ments allocated to the contamination across the 500 data sets. Recall that 29 elements were

randomly selected to be outliers for data sets that contained outliers. The median number

of labs that had at least one outlying element is also consistent with the true value of 10 or 0

labs (as is seen in the ‘outlying labs’ column). Table 2 indicates that the LC model is fairly

accurate in its allocation of outlying elements.

5 Data Analysis of the NIST/NOAA Sponsored Inter-

Laboratory Study

In this section we briefly describe the data that was produced from the marine mammal

inter-laboratory experiment, provide results of the analysis from the LC model along with

the three other methods outlined in the previous section, and assess model fit using cross

validation.

5.1 Description of NIST/NOAA inter-laboratory study Data

In 2005 a NIST/NOAA sponsored inter-laboratory study was conducted to improve the

quality of trace element measurements in marine environmental systems. The NIST pre-

pared fresh-frozen marine mammal control materials (white-sided dolphin liver homogenate
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(QC04LH4)). A glass jar containing approximately 8-10 grams of the frozen material was

distributed to 33 participating laboratories. Each lab was asked to keep the material in an

environment that would preserve its authenticity and to divide the material into five aliquots.

Measurements of 15 trace elements (Ag, As, Cd, Co, Cs, Cu, Fe, Hg, Mn, Mo, Rb, Se, Sn,

V and Zn) using in-house analytical techniques were to be taken on each aliquot. The raw

measurement results were submitted to the NIST. Figure 1 provides a graphical display of

measurement results for As and Se. Additional details are provided in Christopher et al.

(2007).

Some labs didn’t measure all 15 trace element concentrations on each aliqout. We imputed

values for the missing data under the missing at random (MAR) assumption (Gelman et al.

(2004)) within our proposed MCMC algorithm. The core assumption of MAR is that the

missingness mechanism does not depend on the missing data. Information regarding the

rationale behind a labs decision not to measure the concentration of all 15 trace elements on

each aliqout is not available. However, there is no obvious indicator of a MAR assumption

violation and it seems completely plausible that the missingness mechanism didn’t depend

on the trace element.

Algorithms to impute missing values and update posterior draws for the four procedures

were written in the C programming language. For each procedure 10000 posterior draws

were collected after a burn in of 20000 and thinning of 5. With regards to computation time,

the computer code associated with the two simpler models required slightly less time (MVN,

584 seconds and MVT, 602 seconds) to run than that of the more complicated models (DP,

980 seconds and LC, 818 seconds). The added flexibility afforded by the LC model comes

at a minimal computational cost.
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5.2 Results From the Marine Mammal Data Analysis

Prior to analysis the data were normalized and log transformed. After transforming back to

the original scale, marginal posterior means and 95% credible intervals were calculated for

each trace element and are provided in Table 3.

Table 3: Posterior means and 95% credible intervals for the fifteen trace elements measured
in the marine mammal inter-laboratory study using the four procedures.

MVN MVT DP LC

Mean 95%CI Mean 95%CI Mean 95%CI Mean 95%CI

Ag 0.50 (0.42, 0.60) 0.48 (0.43, 0.54) 0.52 (0.38, 0.66) 0.47 (0.43, 0.50)
As 0.30 (0.26, 0.34) 0.28 (0.26, 0.30) 0.30 (0.25, 0.35) 0.29 (0.26, 0.31)
Cd 0.25 (0.20, 0.30) 0.22 (0.20, 0.23) 0.26 (0.18, 0.36) 0.22 (0.20, 0.23)
Co 0.03 (0.00, 0.06) 0.02 (0.01, 0.03) 0.03 (0.00, 0.08) 0.01 (0.01, 0.02)
Cs 0.03 (0.02, 0.05) 0.03 (0.02, 0.04) 0.03 (0.02, 0.05) 0.03 (0.03, 0.03)
Cu 5.52 (4.84, 6.16) 5.26 (4.99, 5.53) 5.56 (4.60, 6.48) 5.25 (5.04, 5.45)
Fe 366.2 (333.7, 398.9) 355.3 (344.1, 367.6) 360.6 (325.3, 398.0) 354.7 (344.7, 364.1)
Hg 4.00 (3.42, 4.62) 3.67 (3.42, 3.95) 4.05 (3.08, 5.03) 3.62 (3.43, 3.82)
Mn 3.20 (2.86, 3.55) 3.10 (2.97, 3.23) 3.07 (2.69, 3.45) 3.13 (3.03, 3.23)
Mo 0.64 (0.25, 1.09) 0.42 (0.32, 0.52) 0.41 (0.17, 0.70) 0.39 (0.32, 0.47)
Rb 1.25 (1.14, 1.36) 1.18 (1.13, 1.24) 1.23 (1.09, 1.39) 1.19 (1.14, 1.24)
Se 3.58 (3.13, 4.03) 3.32 (3.09, 3.54) 3.68 (3.07, 4.33) 3.32 (3.09, 3.57)
Sn 0.12 (0.04, 0.21) 0.08 (0.05, 0.11) 0.15 (0.03, 0.30) 0.09 (0.05, 0.13)
V 0.05 (0.04, 0.06 0.04 (0.04, 0.05) 0.05 (0.04, 0.07) 0.05 (0.04, 0.06)
Zn 29.49 (24.26, 35.50) 30.90 (29.04, 32.77) 30.38 (24.89, 36.07) 30.92 (29.69, 32.17)

From Table 3 it can be seen that the 95% credible interval widths are generally the smallest

under the LC model. In fact, the average credible interval width is smaller for the LC (1.58)

compared to the DP model (6.10), the MVT model (1.97) and the MVN model (5.49). No-

tice that in terms of estimating the location of µ∗0k, the LC and MVT procedures are very

similar. The advantage that the LC procedure has over the MVT is mainly in the estimation

of the variability associated with µ∗0k.

We set L = 10 when fitting the LC model to the marine mammal data set . Table 4 gives the

posterior probability distribution on the number of occupied contamination clusters. Five
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occupied contamination clusters turned out to have the highest posterior probability.

Table 4: Fraction of MCMC iterates for which the number of contamination clusters were
occupied

Number of occupied contamination clusters

3 4 5 6 7 8 9

Posterior Probability 0.0509 0.2717 0.3888 0.2253 0.0564 0.0065 0.0004

A nice characteristic of the LC model is that it is possible to estimate the posterior prob-

ability of the ith lab being part of the majority. This can be done by computing E(πi|y),

the posterior mean of πi. In addition, E(γik|y), the posterior mean of γik, provides the pos-

terior probability that the kth element corresponding to the ith lab is part of the majority.

These probabilities are listed in Table 5. The number of trace elements for each lab such

that E(γik|y) < 0.1, E(γik|y) < 0.5, and E(γik|y) < 0.9 are found in parenthesis. Lab 18

reported measurements for multiple trace elements that might be considered to be far from

the majority and this is reflected in its posterior probability of being an outlier. With regards

to the trace elements referenced in Section 1, the posterior probability of As belonging to

the majority component for lab 17 is 0.87, for lab 18 is 0.00, and for lab 26 is 0.05, while the

posterior probability of Se belonging to the majority component for lab 17 is 0.025, for lab

18 is 0.00, and for lab 26 is 0.80.

We assessed model fit using cross-validation. A testing partition of the marine mammal

data was created by removing 2 randomly selected observations from 10 randomly selected

laboratories. The MVN, MVT, DP, and LC models were fit to the remaining portion of the

marine mammal data set and the removed observations were imputed within the MCMC

algorithm.
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Table 5: The posterior probability of each laboratory being part of the majority compo-
nent (E(πi|y)). The values in parenthesis are the number of trace elements for each lab
whose posterior means of γik are less than 0.1, 0.5, and 0.9. The posterior mean of γik is
the probability that the kth element corresponding to the ith lab is part of the majority
component.

Lab E(πi|y) Lab E(πi|y) Lab E(πi|y) Lab E(πi|y)

1 0.98 (0,0,0) 11 0.68 (4,5,14) 21 0.97 (0,0,0) 31 0.97 (0,0,1)
2 0.98 (0,0,0) 12 0.92 (1,1,2) 22 0.98 (0,0,0) 32 0.92 (1,1,2)
3 0.98 (0,0,0) 13 0.97 (0,0,0) 23 0.90 (1,2,3) 33 0.94 (0,0,1)
4 0.97 (0,0,0) 14 0.97 (0,0,0) 24 0.98 (0,0,0)
5 0.96 (0,0,0) 15 0.87 (1,1,6) 25 0.98 (0,0,0)
6 0.97 (0,0,0) 16 0.97 (0,0,0) 26 0.82 (1,2,13)
7 0.97 (0,0,0) 17 0.89 (1,2,4) 27 0.96 (0,0,1)
8 0.97 (0,0,0) 18 0.46 (12,13,14) 28 0.75 (3,5,9)
9 0.97 (0,0,0) 19 0.91 (1,1,3) 29 0.98 (0,0,0)
10 0.97 (0,0,0) 20 0.97 (0,0,0) 30 0.92 (1,1,1)

Typically the goal in using out of sample prediction to assess model fit is to determine how

concentrated the posterior distribution for the predictive values is around the truth. Often

this is done by computing the mean squared prediction error (MSPE). However, the MSPE

only provides a measure of how close a point estimate of the predicted value is to the true

value. That is, it doesn’t consider in any way how concentrated the posterior distribution is

around the truth. In addition, when outliers are present it is not completely clear that the

mpse is a good metric to assess out of sample prediction. Since outliers make up a small

minority of the observations, overly-simple models that under-estimate the true uncertainty

may do well in terms of MSPE as the bias introduced by the outliers is dominated by the

smaller variance. Because of this we propose the following measure of how concentrated the
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posterior distribution for a predicted value is to the truth:

1

p

p∑
k=1

[
1

T

T∑
t=1

(ypredtk − ytestk)2

]
. (13)

Here ypredtk is the tth MCMC iterate of the kth entry of the predicted vector and ytestk is

the the kth entry of a data vector from the testing data set. This metric incorporates each

MCMC iterate to assess concentration around the truth. The value of equation (12) averaged

over the twenty predictions under the LC model (0.062) was slightly smaller than that of the

other three models (MVN (0.064), MVT (0.064), and DP (1.130)). The average prediction

interval width was also slightly smaller for the LC model (1.59) compared to the other three

(MVN (1.63), MVT (1.60), and DP (5.18).

5.3 Univariate Analyses

A very simple approach to the analysis of these type of data is to perform an independent

analysis for each trace element. Indeed this was the approach the NIST originally used to

establish a reference value (Christopher et al. (2007)). Here we compare the performance of

the LC model in establishing a reference value to that obtained by performing 15 independent

univariate analyses. There are any number of approaches one might take to conduct a

univariate analysis that would be robust (accommodating) to the presence of outliers. None

of these approaches are exactly comparable/analogous to the LC model. Because of this we
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use the following univariate model that accommodates univariate outliers very flexibly.

yij ∼ N(µi, σ
2
i )

(µi, σ
2
i ) ∼ P

P ∼ DP (α, P0) with P0 = N(µ∗0, σ
2∗
0 )

In addition a normal-inv-Gamma prior was used for (µ∗0, σ
2∗
0 ) and a inv-Gamma prior was

used for σ2
i . Hyperprior values equaling those used for the LC model were used. Using a

Dirichlet process prior to model the density of (µi, σ
2
i ) provides a great deal of flexibility and

hopefully this results in the ability to make reasonable comparisons between the LC model

and 15 independent univariate analyses. The above model was fit to each of the 15 trace

elements found in the marine mammal data set. Posterior means and 95% credible intervals

associated with µ∗0 were computed for each trace element and are listed in Table 6.

Apart from the fact that performing separate univariate analyses effectively ignores the

dependence structure and therefore can produce misleading results, there appear to be some

pragmatic gains to using the LC procedure. The credible interval widths associated with

the LC model are shorter compared to those coming from the 15 independent analyses.

Obviously shorter credible intervals are desirable only if point estimates corresponding to

the intervals are near the truth. We argue that this is indeed the case in the present setting

using the results from the simulation study (the bias associated with estimates using the LC

procedure was very small in the presence of outliers) and the fact that the LC model and 15

independent univariate analyses produce point estimates that are fairly similar. In the cases

for which the point estimates from the two procedures differ (e.g. Se), those associated with

the 15 independent univariate analyses are greater than those from LC procedure. This could

be an indication that results from the univariate analyses are still influenced by outlying labs
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as outlying labs produced measurements greater than the majority in the marine mammal

data set.

Table 6: Posterior means and 95% credible intervals for the fifteen trace elements measured
in the marine mammal inter-laboratory study using 15 independent univariate analyses,
t-residual LC model and the normal residual LC model

Univariate t-residual LC Model LC Model

Mean 95%CI Mean 95%CI Mean 95%CI

Ag 0.48 (0.45, 0.53) 0.46 (0.44 , 0.48) 0.47 (0.43, 0.50)
As 0.34 (0.26, 0.43) 0.29 (0.27 , 0.31) 0.29 (0.26, 0.31)
Cd 0.26 (0.21, 0.30) 0.22 (0.21 , 0.23) 0.22 (0.20, 0.23)
Co 0.02 (0.01, 0.04) 0.01 (0.01 , 0.02) 0.01 (0.01, 0.02)
Cs 0.03 (0.02, 0.05) 0.03 (0.03 , 0.03) 0.03 (0.03, 0.03)
Cu 5.44 (4.89, 6.35) 5.18 (5.01 , 5.35) 5.25 (5.04, 5.45)
Fe 355.8 (333.8, 378.7) 354.8 (344.7 , 364.3) 354.6 (344.7, 364.1)
Hg 3.71 (3.36, 4.14) 3.61 (3.44 , 3.79) 3.62 (3.43, 3.82)
Mn 3.16 (2.94, 3.39) 3.10 (3.01 , 3.19) 3.13 (3.03, 3.23)
Mo 0.41 (0.38, 0.45) 0.39 (0.34 , 0.45) 0.39 (0.32, 0.47)
Rb 1.35 (1.20, 1.53) 1.18 (1.12 , 1.22) 1.19 (1.14, 1.24)
Se 3.99 (3.06, 5.05) 3.35 (3.09 , 3.60) 3.32 (3.09, 3.57)
Sn 0.11 (0.05, 0.19) 0.07 (0.05 , 0.09) 0.09 (0.05, 0.13)
V 0.05 (0.04, 0.07) 0.05 (0.04 , 0.05) 0.05 (0.04, 0.06)
Zn 30.03 (27.84, 32.32) 30.96 (29.76 , 32.14) 30.92 (29.69, 32.17)

5.4 Using a t-distribution Residual to Accommodate Within Lab

Outliers

In addition to outlying labs, it is possible for within-lab outliers to exist. These types of

outliers can easily be accommodated by changing (1) to

yij
ind∼ tp(µi,Σi, κ)
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where tp(µ,Σ, κ) denotes a shifted (µ) and scaled (Σ) p-dimensional t-distribution with

κ degrees of freedom. Conceptually this is a very straightforward modification of the LC

model. Computationally, we lose conjugacy if the t density is used directly. However, the

t-distribution can be represented as a scale mixture of normals and this characterization of

the t preserves full conjugacy. Thus, a t-density residual can be obtained with the following

hierarchy

yij
ind∼ Np(µi, λijΣi)

λij
iid∼ IG(κ/2, 2/κ).

With this representation of the t-distribution (2) and (3) change in the following ways

[µi|−] ∼ Np

[Σ−1
i

ni∑
j=1

λ−1
ij + T−1

γi

]−1 [
Σ−1
i

ni∑
j=1

λ−1
ij yij + T−1

γi
δγi

]
,

[
Σ−1
i

ni∑
j=1

λ−1
ij + T−1

γi

]−1
 ,

[Σi|−] ∼ IW

(
ni + v,

ni∑
j=1

λ−1
ij yijdiag(ψi)

−1(yij − µi)(yij − µi)′diag(ψi)
−1 +A

)
.

In addition, the full conditional for λij is

[λij|−] ∼ IG

(
1

2
(κ+ p),

(1

2
[(yij − µi)′Σ−1

i (yij − µi) + κ]
)−1
)

One can assign a prior to κ but for simplicity we set κ = 4. Using the same prior values for the

t-residual LC model as those used for the Gaussian residual LC model, we fit the t-residual

LC model to the marine mammal data set. Posterior means and 95% credible intervals for

µ∗0k, k = 1, . . . , p are listed in Table 6. The results are fairly comparable to a Gaussian LC

model. The average credible interval length across the 15 trace elements turned out to be

1.58 with all 15 point estimates being very similar to those from the Gaussian residual LC

model. Using E(γik|y) < 0.1 as a criteria to classify the kth element of the ith lab as an
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outlier, there were 29 outlying elements (compared to 27 using the Gaussian residual) and

11 labs with at least one outlying element (compared to 11 using the Gaussian residual).

6 Conclusion

We have developed a methodolgy that does very well in accommodating multivariate outliers

in a multi-level/hierarchical modeling framework. Although the presentation of the model

is necessarily a bit notation heavy, the fundamental idea to handling multivariate outliers

(locally allocating multivariate vector entries to a contamination) could not be more natural

and is quite simple and intuitive. In addition to being robust to the presence of outliers, the

methodology provides probabilistic inference on lab/element outlier classification. This type

of information should be of interest to practitioners. Also, the methodology incorporates the

uncertainty associated with lab/element outlier classification in parameter estimation and

inference. These nice features are available at a minimal computational cost, as a straight-

forward Gibbs sampler is all that is required to implement the methodology. Computer code

is available from the first author by request.

28



Appendices

A Derivation of full conditionals

Here we only include details regarding [µ∗0|−] and [σ2∗
0 |−] as the derivations of [µ∗h|−] and

[σ2∗
h |−] follow similar arguments. We begin with [µ∗0|−].

[µ∗0|−] ∝
m∏
i=1

φ(µi; δγi ,Tγi)φ(δγi ;m0,S0)

∝
m∏
i=1

exp{−0.5(µi − δγi)′T−1
γi

(µi − δγi)− 0.5(δγi −m0)
′S−1

0 (δγi −m0)}

∝ exp
{− 0.5

( m∑
i=1

[− µ′iT−1
γi

(µ∗0 ⊗ γi + µ∗Si ⊗ (1− γi))−

(µ∗0 ⊗ γi + µ∗Si ⊗ (1− γi))′T−1
γi
µ′i+

(µ∗0 ⊗ γi + µ∗Si ⊗ (1− γi))′T−1
γi

(µ∗0 ⊗ γi + µ∗Si ⊗ (1− γi))
]
+

µ∗
′

0 S
−1
0 µ

∗
0 − µ∗

′

0 S
−1
0 m0 −m′0S−1

0 µ
∗
0

)}
∝ exp

{− 0.5
(
µ∗
′

0

[ m∑
i=1

T−1
γi=0 + S−1

0

]
µ∗0 − µ∗

′

0

[ m∑
i=1

T−1
γi=0µi + S−1

0 m0

]−
[ m∑
i=1

µ′iT
−1
γi=0 +m′0S

−1
0

]
µ∗0
)}

∼ Np

[ m∑
i=1

T−1
0:γi=0 + S−1

0

]−1 [ m∑
i=1

T−1
0:γi=0µi + S−1

0 m0

]
,

[
m∑
i=1

T−1
0:γi=0 + S−1

0

]−1
 .

29



Now [σ2∗
0 |−] can be obtained by

[σ2∗

0k|−] ∝
m∏
i=1

φ(µi; δγi ,Tγi)IG(σ2∗
0k; aσk , bσk)

∝ (σ2∗
0k)
−0.5

Pm
i=1 γi−aσk−1 exp{−0.5

m∑
i=1

γik(1/σ
2∗
0k)(µik − µ∗0k)2 − 1/(bσkσ

2∗
0k)}

∼ IG

aσk +
1

2

m∑
i=1

γik,

[
1

bσk
+

1

2

m∑
i=1

γik(µik − µ∗0k)2

]−1
 .
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