
A Bayesian Approach to Establishing
a Reference Particle Size Distribution

in the Presence of Outliers

Garritt L. Page
Pontificia Universidad Católica de Chile
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Abstract

The presence of observations or measurements that are unlike the majority is fairly

common in studies conducted to establish particle size (or weight fraction) distribu-

tions. Therefore, there is a need to develop methods that are able to produce esti-

mates of particle size distributions that are not overly sensitive to the presence of a few

observations that might be considered outliers. This article proposes a type of con-

tamination mixture model that probabilistically allocates each observation to either

a “majority” component or a contamination component. Observations that are allo-

cated to a contamination component are down-weighted when estimating the particle

size distribution (while the uncertainty of contamination classification is automatically

accounted for in estimation). Computational methods are developed and the utility

of the proposed methodology is demonstrated via a simulation study. The method is

then applied to data produced from an inter-laboratory study conducted to establish

a particle size distribution in cement.

1 Introduction

Estimating a particle size distribution (PSD) is an important (and often necessary) exer-

cise in a large range of disciplines. Studies in areas as diverse as environmental science (Zhang

et al. [20]), cement composition (Ferraris et al. [4]), soil composition (Bah et al. [1]), and

even mastication (Van der Bilt et al. [18]) are conducted with the purpose of learning about

PSDs. Many methods are employed to gather data in a particle size study. The method

that may be the least technical and therefore simplest to describe is that of sieving. In these

studies, PSDs of specimens of a granular material are run through a set of progressively finer

sieves. The fraction of specimen weight or the average size of particle that is retained at

each sieve can then be used to establish a PSD. Other methods, though more complicated,

still tend to focus on either a weight fraction or typical particle size at different discretized

“levels.” In the case of weight fraction analysis (which is the focus of this paper), “particle

1



size distribution” is a bit of a misnomer. It has the natural meaning of frequency distribution

of size across particles. What is really under discussion is the cumulative weight fraction of

the material as a function of particle size. Regardless, PSD is standard terminology in this

area and we use it throughout this discussion.

Sieving is one of the five procedures that were employed in a round-robin (inter-laboratory)

study conducted by an ASTM (American Society for Materials and Testing International)

committee. (See Ferraris et al. [4] for more details.) The study was conducted to learn

about cement particle size distributions and to establish a “single calibration curve that rep-

resents the average distribution for all methods inclusive.” Twenty-one labs participated in

the inter-laboratory study and were instructed to report a cumulative PSD measurement by

employing the commonly used in-house technique (which resulted in the five measurement

techniques). The results of the study can be found in Figure 1 (henceforth referred to as the

NIST data set).

Each discipline has seemingly espoused its own method of estimating PSDs from data

like that found in Figure 1. Some simply “average” observations at each sieve size (Ferraris

et al. [4])). Others adopt a mathematical model (Van der Bilt et al. [18], Bah et al. [1])

and typically use some variation of nonlinear least squares to fit the model to the data. In

the statistical literature, there is a surprisingly little dedicated specifically to estimating a

“typical” PSD from data like those represented in Figure 1. Lwin [13] provides a method

that is based on the bulk sampling, renewal process theory of Scheaffer [17]. The idea is to

minimize a type of Kullback-Leibler distance between a theoretical weight size distribution

and the sample weight-size distribution. Though the method provides reasonable results,

estimation procedures are somewhat ad-hoc and uncertainty associated with the PSD esti-

mate is not readily available. Lwin [14] proposes the direct use the approximate likelihood

of Lwin [13] to formulate a model approach. Leyva et al. [11] develop maximum likelihood

techniques and uncertainty estimates using the approximate likelihood of Lwin [13]. Their

methodology has the virtue of being completely model-based and therefore PSDs and their
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Figure 1: The raw cumulative weight fractions produced in the round-robin administered to
measure the particle size distribution of cement.

uncertainty estimates are obtained in a principled and coherent way. In addition, Leyva et

al. [10] develop a fully Bayesian methodology based on the same asymptotic multivariate

normal structure, which provides sensible PSD estimates and readily available uncertainty

quantification.

A common characteristic of all methods just described when applied to the NIST data set

is the sensitivity of the PSD estimate to the presence of Labs R and L. It is not completely

obvious how one might handle the measurements originating from these two labs. Simply

discarding measurements from these two labs needs to be clearly justified (e.g., as coming

in response to recording error). Since the Lwin procedures are not model-based, one would

have to develop new estimators that are robust to the presence of outliers (something that

doesn’t appear to be straightforward). However, since the Bayesian approach outlined in
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Leyva et al. [10] is model-based, it can be modified in direct fashion using the “robust”

techniques found in Page et al. [15]. The robustified analysis includes all lab measurements

and accommodates outliers probabilistically. Therefore, the uncertainty corresponding to

outlier classification is incorporated in all estimation and prediction. The development of

this robust methodology and the investigation of its properties are the focus of this paper.

Before proceeding, it is worth noting that because weight fraction data are constrained

to sum to one, it might seem natural to consider methods found in the compositional data

literature (see Aitchison [2] for an introduction and Filzmoser et al. [6] for robust compo-

sitional data methods). However, these methods ignore ordering of the size/weight classes

(and implicit expectations of corresponding “smoothness” of PSD’s) and are not applicable

if for example different sets of size classes are used for different specimens.

The remainder of the article is organized as follows. Section 2 provides details from

Leyva et al. [10]’s multivariate PSD modeling strategy that are necessary for developing the

robust methodology. In Section 3 we develop a model that provides a robust PSD estimate

and the computation necessary to carry out the analysis. Section 4 contains a simulation

study comparing the robust Bayesian analysis to Leyva et al. [10]’s MLE approach and least

squares fitting of a logistic curve. In Section 5 we apply the methodology to the NIST data

set and Section 6 contains some concluding remarks.

2 Background: Models and Bayes Procedures for PSDs

In this section we summarize the parts of Leyva et al. [10]’s class of models that are

required in the present study. First, multivariate normal likelihoods are detailed and then

Bayesian extensions are given. For more background concerning what follows, the reader is

referred to the paper.
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2.1 Multivariate Normal Likelihoods for Particle Weight Fractions

Let particle size and weight be denoted by S and W respectively. Suppose that there

are k particle size intervals [Ci−1, Ci) for i = 1, . . . , k where C0 < C1 < · · · < Ck. Let

p1, p2, . . . , pk be the corresponding specimen weight fractions. Then, from the assumption

that log(S) ∼ N(µs, σ
2
s) together with E[W |S = s] = κsη and E[W 2|S = s] = κ′s2η, for some

constant η, Lwin [13] and Leyva et al. [11] argue that

(p1, p2, . . . , pk)
′∼̇ MVN(π,Σ) (1)

for the generation of specimens via random sampling of particles up to a fixed total weight.

(Here ∼̇ denotes “approximately distributed as.”) π and Σ are functions of four parameters

(µs, σ
2
s , η, τ). The mean vector is

π = (π1, π2, . . . , πk)
′ for πi =

Φ
(

logCi−µ∗s
σs

)
− Φ

(
logCi−1−µ∗s

σs

)
Φ
(

logCk−µ∗s
σs

)
− Φ

(
logC0−µ∗s

σs

) (2)

where Φ(·) denotes the cdf of a standard normal distribution and µ∗s = µs + ησ2
s . The

variances and covariances in Σ are

Cov(pi, pu) = τ


πi(1− πi)γ∗i + π2

i

[
k∑
`=1

π`γ
∗
` − γ∗i

]
for i = u

πiπu

[
k∑
`=1

π`γ
∗
` − γ∗i − γ∗u

]
for i 6= u

with

γ∗i = eη(µ
∗
s+0.5ησ2

s)
Φ
(

logCi−(µ∗s+ησ2
s)

σs

)
− Φ

(
logCi−1−(µ∗s+ησ2

s)
σs

)
Φ
(

logCi−µ∗s
σs

)
− Φ

(
logCi−1−µ∗s

σs

) . (3)

The principle motivation for employing this method is that a potentially very-high dimen-

sional multivariate normal distribution is parsimoniously parametrized with only four param-
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eters. In addition, there is (at least in principle) an intuitive interpretation that accompanies

each parameter. πi is the fraction of log-normal mass that lies in the ith particle size interval,

and the covariance pattern is vaguely similar to a multinomial covariance structure. µ∗s and

σ2
s are the mean and variance of the log particle sizes, τ is a scaling factor for the covari-

ance matrix, and η can be thought of as potentially characterizing the “shape of average

particles.” Under the assumptions stated above, the cumulative weight fraction up to size s

is

CW (s;µ∗s, σ
2
s) =

Φ
(

log s−µ∗s
σs

)
− Φ

(
logC0−µ∗s

σs

)
Φ
(

logCk−µ∗s
σs

)
− Φ

(
logC0−µ∗s

σs

) . (4)

Though the approximate likelihood (1) is arrived at through the bulk sampling renewal

ideas of Scheaffer [17], the fact that it is singular leads one to consider some of the transfor-

mation ideas found in the compositional data literature. We consider the additive log ratio

transformation of Aitchison [2]. It has been noted that this transformation is not isometric

(see Egozcue et al. [3]). That said, we proceed with this transformation, as all inference is

done in the original space and MCMC procedures typically employed with Bayesian model-

ing (which we adopt) have the virtue of propagating uncertainty through transformations.

Also, preliminary investigations (not shown) indicate that results are fairly insensitive to the

basis used in the ratio transformation. Therefore, we fix the first particle weight fraction as

a base and consider the model

q =



log p2 − log p1

log p3 − log p1
...

log pk − log p1


∼̇ MVNk−1(δ,∆) (5)

where

δ = (δ2, δ3, . . . , δk)
′ with δi = log πi − log π1 i = 2, . . . , k
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and the entries of ∆ are

Cov(qi, qu) = τ


1
πi
γ∗i + 1

π1
γ∗1 for i = u

1
π1
γ∗1 for i 6= u

(These moments follow from a “delta method” approximation based on the earlier modeling

for p) If we use this modeling for log ratios of weight fractions and assume that results from

different labs are independent, then letting h(qj|µ∗s, σs, η, τ) denote the appropriate MVNk−1

pdf for the jth lab’s results, the likelihood function based on the log weight fraction ratios is

Lq(µ∗s, σ
2
s , η, τ) =

L∏
j=1

h(qj|µ∗s, σ2
s , η, τ).

2.2 Bayesian Models

Often the parameters µ∗s, σ
2
s , η, τ are not of principle interest, but rather CW (·) (a func-

tion of µ∗s, σ
2
s). One can use a plug-in approach to obtain a point estimate of CW (·), but its

uncertainty and asymptotic distributional properties are more difficult to obtain. Addition-

ally, it may be of interest to predict a PSD from a participating lab or possibly a lab whose

measurements have yet to be taken. These predictions are readily available if one adopts a

Bayesian modeling strategy. In light of this, using a Bayesian model may be of interest. Let

g(µ∗s, σ
2
s , η, τ) be a joint (prior) density for the parameters µ∗s, σ

2
s , η, τ . Then the posterior

distribution for the parameters given the qj has density

g(µ∗s, σ
2
s , η, τ |q1, q2, . . . , qL) ∝ Lq(µ∗s, σ

2
s , η, τ)g(µ∗s, σ

2
s , η, τ).

The posterior distributions may be approximated using Markov Chain Monte Carlo

(MCMC) techniques. Using the MCMC samples, approximate posterior distributions for

parametric functions, t(µ∗s, σ
2
s , η, τ), are readily available (including values of CW (·), for

example). Further, approximate posterior predictive distributions are available for an addi-
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tional weight fraction vector pnew.

3 Robust Models for PSDs

In this section we detail a method that robustifies the PSD estimate obtained from the

Bayesian multivariate normal model of Leyva et al. [10] (and described in Section 2) to the

presence of a few observed weight fraction vectors that are unlike the majority. These robust

PSD estimates are obtained by incorporating mixture models like those in Page et al. [15].

These models can be thought of as contamination mixture models, since each observation is

allocated to a “majority” component or a contamination component. Observations that are

allocated to the contamination component are down-weighted when estimating a PSD.

3.1 Mixtures at the Observation Level

Modeling q with a two-component mixture requires modifying the likelihood described

in the previous section. The likelihood in (5) becomes.

qj
iid

∼̇ ρMVNk−1(δ,∆) + (1− ρ)MVU(G,H). (6)

where MVU(G,H) denotes a multivariate uniform distribution on a (k − 1)-dimensional

rectangle defined by lower limits in G and upper limits in H which are user-supplied and ρ

is the probability that a randomly selected PSD is an outlier. As mentioned in Page et al. [15]

one motivation for using a MVU distribution to model the contamination is to circumvent

the label switching commonly met in Bayesian mixture analysis (see Jasra et al. [9]). We

discuss our method of selecting entries of vectors G and H in Section 3.2

We assume that ρ ∼ Beta(9, 1). This follows the suggestion made by Verdinelli et al. [19]

to make the probability of (a randomly selected weight fraction vector being) an outlier small

(i.e., 1−E(ρ) = 0.1). To finish the model we employ the prior specifications used by Leyva

et al. [10] save for σ2
s which we assume follows an inverse gamma distribution. The precise
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assumptions we will use under the “first level” mixtures are presented below.

qj
iid

∼̇ ρMVNk−1(δ,∆) + (1− ρ)MVU(G,H),

µ∗s ∼ N(0, 1000),

σ2
s ∼ IG(0.01, 0.01),

η ∼ UN(0, 3),

τ ∼ Exp(0.001), and

ρ ∼ Beta(9, 1).

IG(a, b) denotes an inverse gamma distribution with mean b/(a − 1). In addition, 0.001 is

the mean of the exponential distribution and 1000 is the variance of the normal distribu-

tion. It was shown in Leyva et al. [10] that the priors employed here can be thought of as

essentially “non-informative” priors. Note that we are assuming a priori independence be-

tween parameters (which is commonly done) but µ∗s and σ2
s are highly correlated a posteriori.

In subsequent sections we refer to this model as “partially specified contamination model”

(PCM).

3.2 MCMC Algorithm with Mixtures at the Observation Level

The joint posterior distribution available from the PCM model is analytically intractable.

In addition, independent random samples from this distribution are difficult if not impossible

to obtain. In light of this, we use MCMC techniques to obtain (correlated) samples. As will

be seen, the MCMC algorithm is a hybrid of a Metropolis within Gibbs algorithm.

To begin we consider the mixture portion of the model. To facilitate MCMC sampling in

Bayesian mixtures it is common practice (Gelman et al. [7]) to incorporate a beta-binomial

latent hierarchical structure to allocate each observation to a mixture component. That is,
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the following latent classification variables

ζj =

 1 if qj
iid

∼̇ MVNk−1(δ,∆)

0 if qj
iid

∼̇ MVU(G,H)

such that ζj
iid∼ Ber(ρ) and ρ ∼ Beta(9, 1) are introduced for each observation. The ζj’s

could potentially be of interest, as they provide posterior probabilities of individual lab

measurements being outliers. Augmenting the model with ζj’s simplifies computation since

the full conditionals of ζj and ρ are of recognizable form and very simple Gibbs sampler may

be used to update their values in the MCMC algorithm. The four remaining parameters

from the multivarate normal likelihood do not have recognizable full conditionals. Random

walk Metropolis steps with a normal proposal distribution can be used to update them. An

MCMC algorithm that provides samples from h(µ∗s, σ
2
s , η, τ, ζ, ρ|q1, q2, . . . , qL) can then be

constructed by updating each parameter on an individual basis using Gibbs steps for ζj’s

and ρ and Metropolis steps for the other parameters. The appendix contains derived full

conditionals and details with regards to the performance of the algorithm.

The procedure developed here can be sensitive to the values selected for G and H .

Because of this, we suggest automating the process by letting the data be a guide. This can

be done by setting the ith entries of G and H to gi = minj qji and hi = maxj qji respectively.

3.3 Estimating a Reference PSD

For the PCM, estimating a reference PSD is fairly straightfoward. Evaluating CW (Ci)

for each MCMC draw of µ∗s and σ2
s provides MCMC iterates from the posterior distribution

of the approximate mean cumulative weight fraction up to size Ci. Computing the empirical

mean or median of these iterates provides an estimate for the mean cumulative weight fraction

up to size Ci, characterizes the PSD.
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4 Simulation Study

To investigate how the PCM performs in accommodating outlying empirical weight frac-

tion vectors, we ran a small simulation study. The study consisted of generating many data

sets that are similar to the NIST data set and for each estimating a reference PSD. We

consider three methods of PSD estimation. The first is computing the MLEs for µ∗s, σ
2
s , η, τ

(which we denote as µ̂∗s, σ̂
2
s , η̂, τ̂) using the likelihood found in display (5). An estimate of

CW (Ci) is had by plugging µ̂∗s and σ̂2
s into display (4). (Here and in what follows we use

ĈW (Ci) to denote a PSD estimates regardless of the methodology used). Secondly, we

consider modeling the cumulative weight fractions directly with the commonly used logistic

curve

f(Ci) =
exp(β0 + β1Ci)

1 + exp(β0 + β1Ci)
. (7)

Estimation of β0 and β1 in (5) was carried out using robust nonlinear least squares. Lastly,

a PSD estimate was obtained using the PCM model. To compare estimated PSDs from the

three procedures to the “true” PSD, we used Aitchison’s distance [2] and a type of total

mean squared error (mse). In the subsequent two sections we detail the methods used to

generate simulated data.

4.1 Using the NIST Data Set and Fitted q MVN Model to Gen-

erate Data Sets

Maximum likelihood estimates for (µ∗s, σ
2
s , η, τ) were computed using the q specification

of a likelihood in Section 2.1 and the NIST data set (excluding labs that the NIST analysis

classified as outliers). Then maximum likelihood estimates δ̂ and ∆̂ were obtained and

used as parameters of a multivariate normal distribution from which vectors of log ratios of

weight fractions were generated. To generate simulated measurements coming from outlying

11



laboratories, 10 was added to µ̂∗s and to σ̂2
s prior to computing q̂ and ∆̂. Then the process just

described was used to generate outlying weight fraction vectors. This method of generating

vectors of particle weight fractions is referred to as the q data generating mechanism (q-

dgm). Since data simulated here is based on (3) the PCM and MLE may have an advantage

over the logistic curve model in estimating a PSD in this data generating scenario. Figure 2

provides an example of a data set for 10 laboratories generated using the q-dgm.

Figure 2: 10 cumulative particle weight fraction functions generated using the q-dgm. The
left plot is an example where no outliers are present. In the right plot three PSDs were
randomly selected to be replaced by a PSD from the contamination distribution.

4.2 Using the NIST Data Set and Unrestricted MVN Models to

Generate Data Sets

After discarding observations from laboratories that were considered outliers in the NIST

analysis (Ferraris et al. [4]) and laboratories that had any weight fraction entries that were

0, an empirical mean vector (q̄) and covariance matrix (Sq) were computed. Then q̄ and

Sq were used as parameters of a multivariate normal distribution from which q vectors were

generated. Outliers were generated in the same way except that q̄ and Sq were computed

with observations from laboratories that were considered outliers in the NIST analysis. This
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method of generating vectors of particle weight fractions is referred to as the empirical data

generating mechanism (e-dgm) and should not provide an inherent advantage to any of the

procedures. Figure 3 provides an example of a data set representing 10 laboratories that was

generated using the e-dgm.

For both data generating methods, 200 data sets each containing 20 PSDs were generated.

100 of the data sets contained outliers and the remaining 100 were outlier free. For data sets

that contained outliers, 5 PSDs were randomly selected to receive “outlier” PSDs.

Figure 3: 10 cumulative particle weight fraction functions generated using the e-dgm. The
left plot is an example where no outliers are present. In the right plot three PSDs were
randomly selected to be replaced by a PSD from the contamination distribution. These
three labs were given a particle weight fraction distribution simulated using a fitted “outlier”
mean and covariance

4.3 Results of Simulation Study

In Table 1, the column “datgen” refers to the method that was used to generate vectors

of weight fractions. The column “outlier” indicates whether measurements from outlying

labs were included when generating vectors of weight fractions. To produce a type of total
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mse of a procedure’s PSD estimate, we computed

1

D

D∑
d=1

(
15∑
i=1

[
CW (Ci)− ĈW d(Ci)

]2)
. (8)

Here CW (Ci) is the ith cumulative sum of the components of the mean vector that generated

the data and d is an index for the D = 100 data sets that were generated. ĈW d(Ci) is the

ith component of an estimated reference cumulative PSD coming from the dth data set. We

use this metric, as the mse is a discrepancy statistic that incorporates both the bias and

error of an estimator. This value can be found under the column header “mse.”

The so-called Aitchison’s distance [2] is commonly used in compositional data analysis

to compute distance between two vectors that lie on the simplex and are constrained to sum

to 1. We employ this distance as a means to compare how “close” the PSD estimates are to

the weight fraction vector that was used to generate the data sets. This distance is

1

D

D∑
d=1

(
15∑
i=1

[
log

ĈW d(Ci)

g(ĈW d(C))
− log

CW (Ci)

g(CW (C))

])
, (9)

where g(·) denotes the geometric mean function. This value was computed using the

robCompositions [8] package found in the statistical computing software R [16]. The aver-

age Aitchison’s distance across the 100 data sets for each estimate can be found under the

header “Adist.”

From Table 1 it appears that the PCM procedure performed best in terms of mse and

Adist in estimating a reference PSD regardless of how the data were generated. This is

particularly true when outlying weight fraction vectors were present.
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Table 1: Results from the simulation study. 100 data sets were generated for each data
generating scenario. The values under the header “mse” were computed using display (8)
and those under the header “Adist” were computed using display (9).

PCM MLE Logit

datgen outlier mse Adist mse Adist mse Adist

q-dgm
No 0.001 0.142 0.004 0.222 0.003 0.458
Yes 0.001 0.178 0.061 0.408 0.009 0.432

e-dgm
No 0.019 0.600 0.019 0.671 0.025 0.682
Yes 0.026 0.825 0.052 2.804 0.028 1.033

5 Reference PSD from the Analysis of the NIST Data

Set

When analyzing the ASTM-(committee C01.25.01)- sponsored inter-laboratory study,

entries associated with particle weight ratios of “0” (which correspond to log weight ratios

of −∞) were imputed to be non-zero within the MCMC algorithm under the missing at

random assumption (see Little et al. [12]). Posterior distributions from the PCM model

were approximated using 3,000 MCMC iterates. These were obtained by pooling iterates

from three chains with sparse (but carefully selected) starting values. Each chain was run

for 100,000 iterations with the first 50,000 being discarded as burn-in and thinned by 50.

The MCMC algorithm was written in the C programming language and the 100,000 MCMC

iterates required 40 sec. to be collected using a desktop computer with 4 gigs of ram. Con-

vergence was monitored graphically using MCMC iterate history plots (see the appendix).

The marginal posterior distributions of µ∗s, σ
2
s , η, τ and ρ are provided in Figure 4. Using

the MCMC iterates and methods discussed in Section 3 a reference cumulative PSD was

estimated along with pointwise 95% posterior credible bands. These along with an MLE

estimate and one obtained using robust nonlinear least squares to fit a logistic curve are

provided in Table 2 and graphically in Figure 5.

From the Figure 4 it appears that a posteriori ρ lies somewhere between 0.65 and 0.95
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Table 2: PSD estimates from the three procedures.

PCM MLE Logit

Particle Size Posterior 95% Credible
(µm) Mean Bands Estimate Estimate

[0, 1) 0.014 (0.006, 0.024) 0.024 0.039
[1, 1.5) 0.034 (0.018, 0.051) 0.051 0.065
[1.5, 2) 0.056 (0.036, 0.082) 0.081 0.933
[2, 3) 0.109 (0.079, 0.144) 0.142 0.150
[3, 4) 0.164 (0.128, 0.204) 0.201 0.205
[4, 6) 0.266 (0.227, 0.313) 0.307 0.308
[6, 8) 0.356 (0.315, 0.400) 0.394 0.395
[8, 12) 0.496 (0.462, 0.535) 0.527 0.528
[12, 16) 0.598 (0.567, 0.629) 0.621 0.622
[16, 24) 0.731 (0.707, 0.754) 0.743 0.738
[24, 32) 0.812 (0.793, 0.828) 0.816 0.806
[32, 48) 0.899 (0.887, 0.912) 0.899 0.876
[48, 64) 0.943 (0.934, 0.952) 0.941 0.912
[64, 96) 0.983 (0.979, 0.986) 0.982 0.947
[96, 128) 1.000 1.000 0.963

(which is the 95% credible interval). Thus the probability that a randomly selected weight

fraction is part of the majority is approximately 80%. In addition, the mean and variance

of the log particles sizes (with 95% credible intervals) are availably by computing E(µ∗s|p)

and E(σ2
s |p) which turn out to be 2.52 (2.41, 2.62) and 1.32 (1.12, 1.57) repectively

Looking at Figure 5 and Table 2, it appears as if the the three PSD estimates are similar.

All three procedures appear to have a slight lack-of-fit in the lower tail. The PSD estimate

from the PCM model and that of the MLE are very similar in the upper tail with the

estimate from the logistic model showing more lack-of-fit. Because all three estimates are

derived from parametric models that are very parsimonious a slight restriction in flexibility

(resulting in some lack-of-fit) should be expected. It does appear that both the MLE and

LOGIT estimates are influenced by the two observations that lie above the majority.

It might be of interest to compare how each lab was classified under the PCM procedure

compared to what was done in the ad-hoc NIST bootstrap analysis. Under the PCM we
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Figure 4: Marginal posterior distributions for for µ∗s, σ
2
s , η, τ and ρ. Time series plots of the

MCMC iterates for each parameter are provided in the appendix.

classified the jth observation as an outlier if E(ζj|p) = Pr(ζj = 1|p) < 0.1. The results can

be found in Table 3. If the entry in the “NIST” column is “Yes” then the corresponding

laboratory was treated as an outlier in the NIST analysis. The opposite holds true for “No”

entries. The columns “PCM” provide the posterior probabilities that laboratories were not

outliers. (Perfect agreement between the NIST and Bayes analyses would pair “Yes” with

0 entries and “No” with 1.0 entries.) We again refer the reader to Figure 1 as a basis for

qualitatively judging how a lab might be classified. Lab R is probably the most obviously

outlying laboratory. The PCM produced posterior probability 1 that Lab R was an outlier.

The labs that the NIST analysis and the PCM procedure classified differently are labs A, J

and T. The NIST analysis classified them as outliers but the PCM procedure did not.

17



Figure 5: The estimated reference PSDs from the PCM procedure, MLE, and robust Logit
model. The gray lines are the raw cumulative PSDs for all labs in the round-robin with the
dark gray indicating labs that were considered outliers.

Table 3: Outlier lab classification obtained from the NIST analysis and using posterior
probabilities obtained under the PCM

Lab NIST PCM Lab NIST PCM

A Yes 1.000 N Yes 0.000
B Yes 0.003 O No 1.000
C No 1.000 Q No 0.998
D No 1.000 R Yes 0.000
F No 0.997 S No 0.999
G No 0.999 T Yes 0.998
H No 0.731 U Yes 0.179
I No 0.999 V No 1.000
J Yes 0.861 W Yes 0.071
K No 1.000 X No 1.000
L Yes 0.001

18



6 Extensions and Conclusions

A potentially huge benefit of the outlined methodology is that it is easily extended to a

hierarchical setting. This would be very useful if, for example, each lab produced replicate

weight fraction vectors. We could then potentially consider modeling the process level of the

hierarchy with a mixture in addition (or in lieu of) the observation level. In this way, we

assume the same basic kind of multivariate normal structure for observations from outlying

labs and non-outlying labs (which is not the case for the PCM models where no multivariate

normal structure is associated with outlying laboratory measurements). This may prove to

be a useful extension in the presence of replication.

We have proposed a Bayes method that can be used to establish a reference PSD in the

presence of outliers. Though the motivating example is from the perspective of an inter-

laboratory study, this procedure could be used in any type of study conducted to estimate a

PSD. The Bayesian methodology facilitates the addition of a mixture distribution to a very

sensible likelihood that provides a PSD estimate that is robust to outliers. The methodology

treats outliers rationally by virtue of the latent structure that is incorporated through the

mixture. This latent structure provides nice probabilistic inference with regards to outlier

classification and the uncertainty associated with this classification is accounted for in all

estimation.

Appendices

A MCMC Algorigthm

Here we briefly describe the Metropolis-within-Gibbs MCMC algorithms used to simulate

draws from the joint posterior distribution.
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Let µ
∗(t)
s , σ

2(t)
s , η(t), τ (t), ρ(t), and ζ

(t)
j denote the tth MCMC iterate for parameters µ∗s,

σ2
s , η, τ , ρ, and ζj. We updated µ

∗(t)
s , σ

2(t)
s , η(t), and τ (t) on an individual basis using random

walk Metropolis steps with a normal proposal distribution. As an example we outline the

process necessary to carrying out a Metropolis update for µ
∗(t)
s . Updates for the remaining

parameters is similar. In what follows µ
∗(t)
s is the first parameter within the tth iteration

to be updated. Let L(µ
∗
s, σ

2
s , η, τ, ζ, ρ) be the likelihood function as described in display (6)

then a Metropolis update can be had by the following 4 steps:

1. generate µ∗news ∼ N(µ
∗(t−1)
s , ωµs) where ωµs is a fixed known value,

2. compute rµ =
L(µ

∗new
s , σ

2(t−1)
s , η(t−1), τ (t−1), ζ(t−1), ρ(t−1))φ(µ∗news ;m0, s

2
0)

Lq(µ
∗(t−1)
s , σ

2(t−1)
s , η(t−1), τ (t−1), ζ(t−1), ρ(t−1))φ(µ

∗(t−1)
s ;m0, s20)

where m0

and s20 are user-supplied constants (prior distribution values) and φ(·) denotes the

normal density,

3. generate v ∼ Bernoulli(min(1, rµ)), and

4. set µ
∗(t)
s1 = vµ∗news1 + (1− v)µ

∗(t−1)
s1 .

Values of ωµs where chosen so that the proportion of MCMC iterates that resulted in accept-

ing the proposed value was approximately 0.30. To update values for ρ and ζj a Gibbs step

was used with the following full conditionals ([θ|−] denotes the distribution of θ conditioned

on all parameters and data).

[ρ|−] ∼ Beta
(∑

ζj + 9, L−
∑

ζj + 1
)

[ζj|−] ∼ Ber(p∗) with p∗ =
φ(qj; δ,∆)

φ(qj; δ,∆)×MVU(qi;G,H)

The algorithms were numerically unstable if starting values for µ∗s where chosen to be

large (in absolute value) compared to σ2
s . Therefore, the starting values should be carefully

selected. In addition, occasionally small candidate values for σ
2(t)
s where proposed. For

these proposed values the likelihood could not be numerically evaluated because of zeros

appearing in the denominators of ratios (2) and (3). To sidestep this, no proposed values
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smaller than 0.01 were accepted in the Metropolis algorithm for σ
2(t)
s . This is reasonable

because as σ
2(t)
s → 0, rσs → 0 .
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