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Abstract

Finite or infinite mixture models are routinely used in Bayesian statistical

practice for tasks such as clustering or density esimation. Such models are very

attractive due to their flexibility and tractability. However, a common problem

in fitting these or other discrete models to data is that they tend to produce

a large number of overlapping clusters. Some attention has been given in the

statistical literature to models that include a repulsive feature, i.e. that encourage

separation of mixture components. We study here a method that has been shown

to achieve this goal without sacrificing flexibility or model fit. The model is

a special case of Gibbs measures, with a parameter that controls the level of

repulsion that allows construction of d-dimensional probability densities whose

coordinates tend to repel each other. This approach was successfully used for

density regression in Quinlan et al. (2018). We detail some of the global properties

of the repulsive family of distributions and offer some further insight by means

of a small simulation study.
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1 Introduction

Hierarchical mixture models have been very successfully employed in a myriad of appli-

cations of Bayesian modeling. A typical formulation for such models adopts the basic

form

yi | θi ∼ k(yi; θi), θ1, . . . , θn ∼
N∑
`=1

w`δφ` , φ1, . . . , φN ∼ G0, (1)

where k(y; θ) is a suitable kernel density, 1 ≤ N ≤ ∞, component weights w1, . . . , wN

are nonnegative random variables such that
∑N

`=1w` = 1 with probability 1 (often

assigned a Dirichlet or stick-breaking prior) and G0 is a suitable nonatomic probability

distribution. Conditional independence is typically assumed for yi | θi and θ1, . . . , θn are

independent and identically distributed. Here N could be regarded as fixed or random

and in the latter case a prior p(N) would need to be specified. Depending on the

modeling goals and data particularities, the model could have additional parameters and

levels in the hierarchy. The generic model (1) includes, as special cases, finite mixture

models (Frühwirth-Schnatter; 2006) and species sampling mixture models (Pitman;

1996; Quintana; 2006), in turn including several well-known particular examples such

as the Dirichlet process (Ferguson; 1973) and the Pitman-Yor process (Pitman and Yor;

1997). There is also a substantial body of literature concerning important properties of

these models such as wide support, posterior consistency, posterior convergence rates,

and connections to finite point processes among others. See, for instance, Ghosal and

van der Vaart (2007), Shen et al. (2013), and Argiento and De Iorio (2019).

A common feature of models like (1) is the use of independent and identically

distributed (i.i.d.) atoms φ1, . . . , φN . This choice seems to have been largely motivated

by the resulting tractability of the models, specially in the nonparametric case (N =∞).

While the use of i.i.d. atoms in (1) is technically (and practically) convenient, a typical

summary of the induced posterior clustering will usually contain a number of redundant

clusters (i.e., clusters that are very close to each other) or very small clusters or even

some singletons. This is facilitated precisely by the use of i.i.d. atoms, which imply no

2



prior restriction on where these atoms may land. Motivated by similar considerations,

the literature has developed some approaches to define probability models that feature

atoms that mutually repel each other. We refer to this feature as repulsion. Colloquially,

the concept of repulsion among a set of objects implies that the objects tend to separate

rather than congregate. This notion of repulsion has been studied in the context of

point processes. For example, determinantal point processes (Lavancier et al.; 2015),

Strauss point processes (Mateu and Montes; 2000; Ogata and Tanemura; 1985) and

Matérn-type point processes (Rao et al.; 2017) are all able to generate point patterns

that exhibit more repulsion than that expected from a Poisson point process (Daley

and Vere-Jones; 2002). From these, we are only aware of determinantal point processes

being used in statistical modeling (Xu et al. 2016; Bianchini et al. 2020).

An alternative way to incorporate the notion of repulsion in modeling is to con-

struct a multivariate probability distribution that contains a repulsion parameter that

explicitly influences or dictates the level of repulsion. Along these lines, Fúquene et al.

(2019) develop a family of probability densities called non-local priors that incorpo-

rates repulsion by penalizing small relative distances between location parameters in a

mixture model. Quinlan et al. (2018) discussed density regression that featured the def-

inition of an explicit family of probability distributions for mixture location parameters

through potentials (functions that describe the ability to interact) as found in Gibbs

measures. The idea also includes a penalization based on pairwise distances between

locations. Their proposal is related to Xie and Xu (2020), who also consider repulsion

based on penalizing pairwise distances among cluster location parameters. The main

difference between these approaches is the ability to control the repulsion strength and

the flexibility on the types of repulsion that can be considered.

Gibbs measures have been widely studied and used for describing phenomena from

mechanical statistics (Daley and Vere-Jones; 2002). Essentially, they are used to model

the average macroscopic behavior of particle systems through a set of probability and

physical laws that are imposed over the possible microscopic states of the system.

Through the action of potentials, Gibbs measures can induce attraction or repulsion

between particles. For example, although no direct connection was made, Petralia et al.

(2012)’s method uses a Gibbs measure with a Lennard-Jones type potential (Jones;

1924) to introduce repulsion. The works by Petralia et al. (2012) and Quinlan et al.
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(2018) are both special cases of Gibbs measures, the later sharing also some connections

with determinantal point processes via versions of Papangelou intensities (Papangelou;

1974). See Georgii and Yoo (2005) for more details.

The aim of this article is to develop properties of the modeling approach proposed in

Quinlan et al. (2018). We do this considering the behavior of repulsive distributions and

also their use in Gaussian mixture models. In particular, we show conditions for the class

of repulsive distributions considered to be well defined, study its usage in the context

of hierarchical repulsive mixture models, and state properties of the corresponding

posterior distribution. Our strategy for modeling using mixtures consists of assuming

a fixed and sufficiently large number of components, an approach that is referred to

as overfitted mixtures in, e.g., Rousseau and Mengersen (2011). In this context, our

approach focuses on the random induced number of occupied or active components (see

Section 6 of Argiento and De Iorio 2019). In particular, we show that our approach

of incorporating repulsion in modeling results in posterior convergence rates that are

similar to the i.i.d. case.

The rest of this article is organized as follows. In Section 2 we recall and contextu-

alize the definition of repulsive distributions that are the main subject of interest and

discuss several of its properties. In Section 3, we detail how the repulsive probability

distributions can be employed in hierarchical mixture modeling. Some aspects of the

model are illustrated by way of a simulation study in Section 4, and Section 5 pro-

vides a brief discussion and points out to some potentially interesting extensions. An

online Supplementary Material contains proofs of the main results and computational

strategies.

2 A Probability Repulsive Distribution

We start by introducing some notation. Let the N -fold product space of Rd be denoted

by Rd
N and let B(Rd

N) be its associated Borel σ-algebra. They constitute the refer-

ence space on which the class of distributions we consider is defined, where N, d ∈ N
(N ≥ 2). Let xN,d = (x1, . . . , xN) with x1, . . . , xN ∈ Rd. In the context of d-dimensional

location-scale mixture models, the coordinates x1, . . . , xN of xN,d can be thought of as

the N ordered location parameters jointly allocated in Rd
N . To the measurable space
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(Rd
N ,B(Rd

N)) we add λNd , the N -fold product of the d-dimensional Lebesgue measure λd.

To represent integrals with respect to λNd , we will use dxN,d instead of dλNd (xN,d). Also,

given two metric spaces Ω1 and Ω2 we will use C(Ω1; Ω2) to denote the class of all con-

tinuous functions f : Ω1 → Ω2. In what follows we use the term “repulsive distribution”

to reference a distribution that formally incorporates the notion of repulsion.

2.1 Gibbs Measures

The repulsive distribution in Quinlan et al. (2018) is a member of the general class of

Gibbs measures for which dependence (and hence repulsion) between the coordinates of

xN,d is introduced via functions that model interactions between them. More formally,

let R = R∪{−∞,∞} be the extended real line and B(R) its associated Borel σ-algebra

generated by the order topology. Consider ϕ1 : Rd → R a measurable function and

ϕ2 : Rd × Rd → R a measurable and symmetric function. Define

νG(A1 × · · · × AN) =

∫
A1×···×AN

exp

{
−

N∑
i=1

ϕ1(xi)−
∑

1≤r<s≤N

ϕ2(xr, xs)

}
dxN,d, (2)

where A1×· · ·×AN is the cartesian product of Borel sets A1, . . . , AN in Rd. Here, ϕ1 can

be thought of as a physical force that controls the influence that the environment has on

each coordinate xi while ϕ2 controls the interaction between pairs of coordinates xr and

xs. The induced probability measure corresponding to the normalized version of (2),

is called a (second-order) Gibbs measure. The normalizing constant (total mass of Rd
N

under νG) is commonly known as the partition function (Pathria and Beale; 2011) and

encapsulates important qualitative information about the interactions and the degree

of disorder present in the coordinates of xN,d. In general, νG(Rd
N)’s tractability depends

mainly on the presence of ϕ2.

Note that symmetry of ϕ2 means that νG defines a symmetric measure. If ϕ2 = 0

then νG reduces to a structure where coordinates do not interact and are only subject

to environmental influence through ϕ1. When ϕ2 6= 0, it is common that ϕ2(x, y)

only depends on the relative distance between x and y (Daley and Vere-Jones; 2002).

More formally, let ρ : Rd × Rd → [0,∞) be a metric on Rd and φ : [0,∞) → R a

measurable function. To avoid pathological or degenerate cases, we consider metrics

that do not treat singletons as open sets in the topology induced by ρ. Then letting
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ϕ2(x, y) = φ{ρ(x, y)}, interactions will be smooth if φ ∈ C([0,∞);R). For example,

Petralia et al. (2012) use φ(r) = τr−ν with τ, ν > 0 to construct repulsive probability

densities, which is a particular case of the Lennard-Jones type potential (Jones; 1924)

that appears in molecular dynamics. Another potential that can be used to define

repulsion is the (Gibbs) hard-core potential φ(r) = ∞I[0,b](r) with b > 0 (Illian et al.;

2008), which is a particular case of the Strauss potential (Strauss; 1975). Here, IA(r)

is the indicator function over a Borel set A in R. This potential, used in the context

of point processes, generates disperse point patterns whose points are all separated by

a distance greater than b units. However, the threshold of separation b prevents the

repulsion from being smooth (Daley and Vere-Jones; 2002). Other examples of repulsive

potentials can be found in Ogata and Tanemura (1981, 1985). The key characteristic

that differentiates the behavior of the potentials provided above is the action near 0; the

faster the potential function goes to infinity as relative distance between coordinates

goes to zero, the stronger the repulsion that the coordinates of xN,d will experiment

when they are separated by small distances.

2.2 RepN,d(f0, C0, ρ) Distribution

There are of course many potentials that could be considered in a Gibbs measure. The

motivation in Quinlan et al. (2018) was to find one that permits modeling repulsion

flexibly, i.e. that avoids forcing more separation among coordinates than required to

satisfactorily model the available data. As noted by Daley and Vere-Jones (2002) and

Ogata and Tanemura (1981) the potential

φ(r) = − log
{

1− exp
(
−cr2

)}
, c > 0, (3)

produces smoother repulsion compared to other types of potentials in terms of “repelling

strength”. This is adopted in the construction below. Note first that connecting (3)

with νG is straightforward: if we take ϕ2(x, y) = − log[1 − C0{ρ(x, y)}] for x, y ∈ Rd

with C0(r) = exp(−cr2) then νG will have a “pairwise-interaction term” given by

exp

{
−

∑
1≤r<s≤N

ϕ2(xr, xs)

}
=

∏
1≤r<s≤N

[1− C0{ρ(xr, xs)}]. (4)

The right-hand side of (4) induces a particular interaction structure that separates the

coordinates of xN,d, thus introducing a notion of repulsion. The degree of separation is

6



regulated by the speed at which C0 decays to 0. In general, the focus is on functions

C0 : [0,∞)→ (0, 1] that satisfy the following four properties: (1) C0 ∈ C([0,∞); (0, 1]),

(2) C0(0) = 1; (3) C0(x) ↓ 0 when x → ∞; and (4) for all x, y ≥ 0, if x < y then

C0(x) > C0(y). Continuity of the repulsion in terms of xN,d induced by these four

properties is guaranteed next.

Lemma 1. Given a metric ρ : Rd×Rd → [0,∞) such that singletons are not open sets

in the topology induced by ρ, the function RC : Rd
N → [0, 1) defined by

RC(xN,d) =
∏

1≤r<s≤N

[1− C0{ρ(xr, xs)}] (5)

belongs to C(Rd
N ; [0, 1)) for all N, d ∈ N (N ≥ 2).

We omit the corresponding proof. We call (5) the repulsive component. Let now f0 ∈
C(Rd; (0,∞)) be a probability density function, so that under ϕ1(x) = − log{f0(x)},
νG in (2) has a “baseline term” given by

exp

{
−

N∑
i=1

ϕ1(xi)

}
=

N∏
i=1

f0(xi). (6)

Incorporating (4) and (6) into (2) we get

νG(A1 × · · · × AN) =

∫
A1×···×AN

{
N∏
i=1

f0(xi)

}
RC(xN,d)dxN,d.

The repulsive probability measures just constructed are well defined as stated next.

Proposition 1. Let f0 ∈ C(Rd; (0,∞)) be a probability density function. The function

g(xN,d) =

{
N∏
i=1

f0(xi)

}
RC(xN,d) (7)

is measurable and integrable for N, d ∈ N (N ≥ 2).

The proof of this result is straightforward and therefore omitted. The class of proba-

bility measures RepN,d(f0, C0, ρ) is defined next.
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Definition 1. The probability distribution RepN,d(f0, C0, ρ) has density function

RepN,d(xN,d) =
1

cN,d

{
N∏
i=1

f0(xi)

}
RC(xN,d), (8)

where cN,d =

∫
Rd
N

{
N∏
i=1

f0(xi)

}
RC(xN,d)dxN,d. (9)

Here xN,d ∈ Rd
N , f0 ∈ C(Rd; (0,∞)) is a probability density function, C0 : [0,∞) →

(0, 1] is a function that satisfies the four above properties and ρ : Rd × Rd → [0,∞) is

a metric such that singletons are not open sets in the topology induced by it.

Proposition 1 guarantees that the class RepN,d(f0, C0, ρ) is well defined. Notice that

the support of (7) is determined by the shape of the “baseline” distribution f0 and

then subsequently distorted (i.e. contracted) by the repulsive component. We also note

that the proposals studied in Xie and Xu (2020) have a similar form to (7), but with

different choices of repulsive component. They use, for instance,

min {g(||xr − xs||2) : 1 ≤ r < s ≤ N} ,

for some monotonically increasing function g : [0,∞)→ [0, 1] with g(0) = 0 and || · ||2
being the Euclidean L2-norm in Rd, which results in a distribution that is not of Gibbs

type. They also consider a variation of the form∏
1≤r<s≤N

{g(||xr − xs||2)}1/N ,

which varies the penalty with N , something we avoid.

It is worth noting two properties related to the RepN,d(f0, C0, ρ) distribution: (i)

because of symmetry, it is an exchangeable distribution in x1, . . . , xN ; and (ii) it does not

induce a sample-size consistent sequence of finite-dimensional distributions, meaning

that ∫
Rd

RepN+1,d(xN+1,d)dxN+1 6= RepN,d(xN,d).

This makes predicting locations of new coordinates problematic. In Section 3 we address

how this may be accommodated in the context of modeling using mixtures.
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3 Repulsive Mixture Models

A main application of the RepN,d(f0, C0, ρ) class is as a prior distrbution for location

parameters in a hierarchical mixture model. We now describe such a setting, focusing

on Gaussian kernels. In applications one would need to specify all the parameters of the

repulsive measure. In what follows, we study properties of a particular choice of these

parameters, which can be thought of as the natural repulsive extension of standard

mixture models with i.i.d parameters.

3.1 Mixtures of Repulsive Distributions

To simplify notation, we will use [m] = {1, . . . ,m}, with m ∈ N. Consider n ∈ N ex-

perimental units whose d-dimensional responses y1, . . . , yn are assumed to be exchange-

able. Let K denote the number of components (or the possible number of clusters)

in the mixture model and assume that the jth cluster (j ∈ [K]) is modeled with a

Gaussian density Nd( · ; θj,Λj) with location θj ∈ Rd and scale Λj ∈ Sd. Here, Sd is

the space of real, symmetric and positive-definite matrices of dimension d× d. We let

θK,d = (θ1, . . . , θK) ∈ Rd
K and ΛK,d = (Λ1, . . . ,ΛK) ∈ SdK where SdK is the K-fold product

space of Sd. Next let πK,1 = (π1, . . . , πK)> ∈ ∆K , where ∆K is the (K− 1)-dimensional

simplex (∆1 = {1}). The standard Gaussian mixture model is then

yi | πK,1, θK,d,ΛK,d ∼
K∑
j=1

πjNd(yi; θj,Λj), (10)

which is commonly restated by introducing latent cluster membership indicators zi,

i ∈ [n] such that yi is drawn from the jth mixture component if and only if zi = j:

yi | zi, θK,d,ΛK,d ∼ Nd(yi; θzi ,Λzi) (11)

zi | πK,1 ∼ P(zi = j) = πj. (12)

The model is completed by assigning standard conjugate-style priors for all parameters.

In the above mixture model, the location parameters associated with each mixture

component are typically assumed to be independent a priori. This is precisely the

assumption that facilitates the presence of redundant mixture components. We instead

consider employing RepK,d(f0, C0, ρ) as a model for location parameters in (10). This
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promotes reducing redundant mixture components (or singletons) without substantially

sacrificing goodness-of-fit, i.e, more parsimony relative to alternatives with independent

locations, and responses that are a priori encouraged to be allocated to a few well-

separated clusters. A specification of the RepK,d(f0, C0, ρ) parameters that achieves the

desired goals is given by

θK,d ∼ RepK,d(f0, C0, ρ)

f0(x) = Nd(x;µ,Σ), µ ∈ Rd, Σ ∈ Sd (13)

C0(r) = exp(−0.5τ−1r2), τ > 0 (14)

ρ(x, y) = {(x− y)>Σ−1(x− y)}1/2. (15)

The specific forms of f0, C0 and ρ are admissible according to Definition 1. The repulsive

distribution parameterized by (13)–(15) will be denoted by NRepK,d(µ,Σ, τ). Because

NRepK,d(µ,Σ, τ) introduces dependence a priori (in particular, repulsion) between lo-

cation parameters, they are no longer conditionally independent given (yn,d, zn,1,ΛK,d),

with yn,d = (y1, . . . , yn) ∈ Rd
n and zn,1 = (z1, . . . , zn)> ∈ [k]n. The parameter τ in (14)

controls the strength of repulsion via (15): as τ approaches 0, the repulsion becomes

weaker. To finish the model specification we employ the following independent prior

distributions

πK,1 ∼ Dir(αK,1), αK,1 = (α1, . . . , αK), α1, . . . , αK > 0 (16)

θK,d ∼ NRepK,d(µ,Σ, τ), µ ∈ Rd, Σ ∈ Sd, τ > 0 (17)

Λj ∼ IWd(Ψ, ν), Ψ ∈ Sd, ν > 0. (18)

At first glance it may seem that the unknown number of clusters in our model

specification is fixed. However, our construction induces a prior distribution on this

quantity in the following way. Denote by nj =
∑n

i=1 I{j}(zi) the number of units

assigned to the jth mixture component. The quantity that regulates the number of

clusters is not necessarily K, but rather

k = K −
K∑
j=1

I{0}(nj).

HereK represents an upper bound on the number of clusters which we denote by k. This

is a well-defined quantity and the NRepK,d(µ,Σ, τ) distribution for mixture component
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centers along with a Dirichlet-Multinomial distribution for component labels induce a

prior model on k (though its distribution is not easy to write down explicitly), with

support on [K]. See Argiento and De Iorio (2019) for a nice discussion on the differences

between mixture components and clusters. In what follows we use “active number of

components” and “number of clusters” interchangeably.

In the remainder of the article we will refer to the model in (11)–(18) as the

(Bayesian) repulsive Gaussian (finite) mixture model (RGMM).

3.2 Theoretical Properties

In this section we explore properties associated the support and posterior consistency

based on the model detailed in (10) and (16)–(18). Theoretical results are guided by

the derivations found in Petralia et al. (2012). Our contribution is that we explore rates

of convergence for the modeling framework we employ in practice (i.e., fixing the upper

bound K), as opposed to the approach taken by Petralia et al. (2012) in which they

explore convergence rates when a prior is assigned to the number of components, but

in practice they fixed an upper bound K.

Consider the family of probability density functions

GK =

{
f( · ; ξK) =

K∑
j=1

πjN( · ; θj, λ) : ξK = (πK,1, θK,1, λ) ∈ ΘK

}
,

where πK,1 = (π1, . . . , πK)>, θK,1 = (θ1, . . . , θK)> and ΘK = ∆K × RK × (0,∞). The

class GK consists of location mixtures of Gaussian distributions with common variance

λ and at most K atoms given by {θ1, . . . , θK}. Additionally, let Bp(x, r) with x ∈ RK

and r > 0 denote an open ball centered on x, with radius r, and Dp(x, r) its closure

relative to the Euclidean Lp-metric (p ≥ 1) on RK .

The results stated next are based on the following conditions:

• B1. The true data generating density f0 ∈ GK , i.e. f0( · ) = f( · ; ξ0K) for

some ξ0K = (π0
K,1, θ

0
K,1, λ0) ∈ ΘK . Here, f0 has exactly k0 ∈ [K] atoms given by

θ01, . . . , θ
0
k0

with respective weights π0
1, . . . , π

0
k0

jointly lying in the interior of ∆k0 .

If k0 < K then π0
K,1 and θ0K,1 are viewed as follow: choose {θ0i : i = (k0+1), . . . , K}

such that

min
{
|θ0r − θ0s | : 1 ≤ r < s ≤ K

}
≥ v0
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for some v0 > 0 and π0
i = 0 for i = (k0 + 1), . . . , K.

• B2. The space ΘK is equipped with the prior distribution

PK = Dir(αK,1)⊗ NRepK,1(µ, σ, τ)⊗ IG(a, b),

where µ ∈ R and a, b, σ, τ > 0. As for αK,1 each coordinate αi : i ∈ [K] satisfies

A0ε
a0
0 ≤ αi ≤ D0 for some constants a0, A0, D0 > 0 and 0 < ε0 ≤ (D0K)−1.

Condition B1 implies that the true cluster centers are separated by a minimum (Eu-

clidean) distance which favors disperse cluster centroids within the range of the re-

sponse. Condition B2 guarantees the existence of a prior probability measure ΠK

defined on GK through PK .

We study the support of ΠK using the Kullback–Leibler divergence. We say that

f0 ∈ GK belongs to the Kullback–Leibler support with respect to ΠK if, for all ε > 0

ΠK

{(
f ∈ GK :

∫
R

log

{
f0(x)

f(x)

}
f0(x)dx < ε

)}
> 0. (19)

Condition (19) can be understood as ΠK ’s ability to assign positive mass to arbitrarily

small neighborhoods around the true density f0. A fundamental step to proving that

f0 lies in the Kullback–Leibler support of ΠK is based on the following lemmas:

Lemma 2. Under condition B1, let 0 < ε < λ0. Then there exists δ > 0 such that∫
R

log

{
f(x; ξ0K)

f(x; ξK)

}
f(x; ξ0K)dx < ε

for all ξK ∈ B1(π
0
K,1, δ)×B1(θ

0
K,1, δ)× (λ0 − δ, λ0 + δ).

Proof: See Section A of the Supplementary Material.

Lemma 3. Under condition B1, let θK,1 ∼ NRepK,1(µ, σ, τ). Then there exists δ0 > 0

such that

P
{
θK,1 ∈ B1(θ

0
K,1, δ)

}
> 0

for all 0 < δ ≤ δ0. This result remains valid even when replacing B1(θ
0
K,1, δ) with

D1(θ
0
K,1, δ).
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Proof: See Section A of the Supplementary Material.

Using Lemmas 2 and 3 we are able to prove the following proposition:

Proposition 2. Assume that conditions B1 and B2 hold. Then f0 belongs to the

Kullback–Leibler support of ΠK.

Proof: See Section A of the Supplementary Material.

We next study the rate of convergence of the posterior distribution under the prior

given by condition B2.. To do this, we show that the conditions specified in Ghosal

and van der Vaart (2001) hold for the model specifications and priors we consider.

Arguments are similar to those found in Scricciolo (2011) when considering univariate

Gaussian mixture models and cluster-location parameters that follow conditions B1 and

B2. First, we need the following lemma:

Lemma 4. The coordinates of θK,1 ∼ NRepK,1(µ, σ, τ) share the same functional form.

Moreover, there exists γ > 0 such that

P(|θi| > t) ≤ 2σ1/2

(2π)1/2cK
exp

(
− t

2

4σ

)
for all t ≥ γ and i ∈ [K]. Here, cK is the normalizing constant of NRepK,1(µ, σ, τ).

Proof: See Section A of the Supplementary Material.

This result permits us to adapt certain arguments found in Scricciolo (2011) that are

applicable when the location parameters of each mixture component are independent

and follow a common distribution that is absolutely continuous with respect to the

Lebesgue measure, whose support is R and with tails that decay exponentially. Using

Lemma 4, we now state the following:

Proposition 3. Assume that conditions B1 and B2 hold. Then, the posterior rate of

convergence relative to the L1-metric is εn = n−1/2 log(n)1/2.

Proof: See Section A of the Supplementary Material.

4 Simulation Study

To numerically explore how τ , the upper bound K on the number of mixture com-

ponents, and n impact performance of the repulsive mixture model, we conduct a
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simulation study. This is done by treating (10) as a data generating mechanism such

that

y ∼ 0.2N2(θ1,Λ1) + 0.3N2(θ2,Λ2) + 0.3N2(θ3,Λ3) + 0.2N2(θ4,Λ4), (20)

with

θ1 = (0, 0)>, θ2 = (4.5, 4.5)>, θ3 = (−4.5,−4.5)>, θ4 = (−3, 3)>,

Λ1 =

(
3 0

0 3

)
, Λ2 =

(
4 1.5

1.5 3

)
,

Λ3 =

(
2 −1.5

−1.5 4

)
and Λ4 =

(
4 −3

−3 3

)
.

This bivariate mixture distribution produces clusters with little overlap. For each

data set generated, we fit four finite Gaussian mixtures based on the following prior

distributions for component means:

1. M1: (θ1, . . . , θK)> are i.i.d. according to a Gaussian distribution.

2. M2: (θ1, . . . , θK)> follows a repulsive distribution with Ogata & Tanemura type

potential.

3. M3: (θ1, . . . , θK)> follows a repulsive distribution with potential used in Petralia

et al. (2012).

4. M4: (θ1, . . . , θK)> follows a repulsive distribution with a hard-core potential.

The exact functional form of each of the potential functions employed in M2–M4 are

provided in Section E of the Supplementary Material. We nevertheless stress here that

M2–M4 are all special forms of the proposed class, and M1 also follows as a limiting

case when the repulsive component of the prior vanishes.

Before detailing results of the simulation, it is worth illustrating how the value of τ

impacts the relative distance between the θs for each potential. We do this by sampling

10,000 draws from each of M2–M4 with K = 4. Further, we set µ = (0, 0)>, Σ = I2,

and consider a sequence of τ values between 0 and 5. For each draw we compute

the minimum pairwise distances among the four θs. The average minimum pairwise

14



distances over the 10,000 draws can be found in Figure 1. Notice that the repulsion

associated with M2 as τ increases is not as strong as that of M3. It is easy to see that

the hard-core potential repels very strongly for values of τ much greater than 2.5. This

is illustrated further in the simulation study.

0 1 2 3 4 5

1
2

3
4

5

τ

D
is

ta
nc

e
M1
M2
M3
M4

Figure 1: Minimum relative Euclidean distances averaged over 10000 draws sampled

from the repulsive distribution of each of the four models considered in the simulation

study.

Returning to the simulation study, after standardizing the data, each of the four

models were fit to each data set by employing the MCMC algorithm detailed in Sections

B and C of the Supplementary Material. We collected 1000 MCMC samples after

discarding the first 10000 as burn-in and thinning by 2. The specific hyper-prior values

we employed for parameters found in (16)–(18) are µ = (0, 0)>, Σ = I2, ν = 6, Ψ =

diag(3, 2), and α1 = · · · = αK = K−1. The first two prior specifications are reasonable

since we standardized the data, while the last three are specifically designed to make

priors diffuse. In the simulation study we consider K ∈ {4, 7, 10} and τ ∈ {0.1, 1.0, 5.0}.
Results based on 100 datasets of n ∈ {500, 1000, 5000} observations are provided in

Figures 2 and 3.

Note first that M1 does not depend on τ and as a result the metrics measured in

the simulation study for M1 do not change as a function of τ (apart from Monte Carlo
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Figure 2: LPML values associated with each of the four models considered in the

simulation study. Recall that model M1 does not depend on τ . For this reason LPML

values for model M1 remain constant for different values of τ save for Monte Carlo

error.
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error). Now, notice that the four models provide very similar fits (see Figure 2) based

on the logarithm of the pseudo-marginal likelihood (LPML) values (Geisser and Eddy;

1979). The lone exception is M4 where τ = 5 clearly introduces too much repulsion

for the hard-core potential. However, even though the repulsive mixtures have similar

model fits, the relative distance between component centers is increased relative to the

i.i.d. mixture model. This can be seen in Figure 3 where as K grows, the relative

distance between component means increases, but remains relatively the same for the

repulsive mixtures. Once again, τ = 5 introduces quite a bit of repulsion for the

hard-core potential which forces the mixture to be comprised of only one component

in “smaller” sample sizes. Further, note that the repulsion employed in Petralia et al.

(2012) is stronger than the “soft” repulsion that accompanies the potential of Ogata &

Tanemura, resulting in larger relative distances between component means.

We consider next the sum of weights associated with the “extra” mixture compo-

nents. Results are displayed in Figure 4. Note that for all models the sum of “extra”

component weights tends towards zero as the sample size grows. However, the rate at

which the sum converges to zero is much faster for M2–M4 with M4 showing the fastest

rate (which is to be expected). Thus, Figure 4 seems to empirically corroborate that

the theory found in Rousseau and Mengersen (2011) applies to our framework (with a

faster convergence rate), even though we do not yet have an analogous result for our

context.

Finally, we also considered a bivariate mixture with clusters having substantial

overlap. We found that the relative differences between models remained the same, and

so we omit these results.

5 Discussion

We have studied a general framework based on Gibbs measures under which a class

of probability models that explicitly parameterizes repulsion can be constructed. We

discuss how different types of repulsion can be accommodated in this class by suitably

choosing potentials. We also argue that soft repulsion provides a nice balance between

the desire to remove redundant (or singleton) clusters that often appear when modeling

location parameters of a mixture model independently, and the forced parsimony that
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Figure 3: Minimum relative Euclidean distance between cluster centers associated with

each of the four models considered in the simulation study. Recall that model M1 does

not depend on τ . For this reason the minimum relative distances between two clusters

remains constant for M1 for the different values of τ save for Monte Carlo error.
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Figure 4: Sum of the K − 4 smallest component weights (recall k0 = 4). Note that

since model M1 does not depend on τ , the sum of “extra” component weights remains

constant for M1 as a function of τ save for Monte Carlo error.
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occurs with hard types of repulsion.

We studied properties of the models and developed theory in a similar way as Pe-

tralia et al. (2012) tailoring it to the potential function and model specifications we

considered. Our approach shares the same modeling spirit (presence of repulsion) as in

Xu et al. (2016), Fúquene et al. (2019), and Xie and Xu (2020). However, the specific

mechanism we propose to model repulsion differs from these works. Xu et al. (2016) is

based on determinantal point processes, which introduces repulsion through the deter-

minant of a matrix driven by a Gaussian covariance kernel. Our approach introduces a

parameter that directly influences repulsion strength which is easier to conceptualize.

We emphasize that our approach exploits the randomness induced by the prior on the

number of clusters, which is indeed random despite the fact that the maximum number

of components is fixed. The work by Fúquene et al. (2019) defines a family of probabil-

ity densities that promotes well-separated location parameters through a penalization

function, that cannot be re-expressed as a (pure) repulsive potential. However, for small

relative distances, the penalization function can be identified as an interaction potential

that produces repulsion similar to that found in Petralia et al. (2012) (i.e., a hard type

of repulsion). Finally, Xie and Xu (2020) consider a Bayesian nonparametric model

that is computationally demanding and employs a different repulsive specification.

The Gaussian mixture model can be extended to other component-specific kernel,

q(·; θ), say, where θ ∈ Θ, a strict subset of Rd. Indeed, by changing the parametrization

to ϕ = h(θ), where h : Θ→ Rd is a one-to-one function with continuous derivatives, we

can adopt the same prior definition (13)-(15). In addition, it might prove beneficial to

employ a prior distribution for the mixture component weights that encourages sparsity

(Heiner et al. 2019, Blasi et al. 2020). However, studying properties of such a model

extension is beyond the scope of this article.

In practice τ in (17) is unknown and needs to be specified or estimated. Because

treating τ as an unknown and assigning it a prior renders the MCMC algorithm detailed

in Sections B and C of the Supplementary Material doubly intractable, we suggest fixing

τ at a specific value. To this end, we devised a straightforward procedure that permits

calibrating τ . Details are provided in Section D of the Supplementary Material.

Finally, an application of this line of modeling to conditional density regression was

already presented in Quinlan et al. (2018). In addition, we are currently studying the
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application of similar strategies to the construction of clusters in situations where there

is a specific motivation for considering well-separated clusters.
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