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Abstract

Particle size is commonly used to determine quality and predict performance of

particle systems. We consider particle size distributions inferred from a material sam-

ple using a fixed number of sieves with progressively smaller size openings, where the

weight of the particles in each size interval is measured. In this article we propose Bayes

analyses for data from particle sieving studies based on parsimonously parameterized

multivariate normal approximate models for vectors of log weight fraction ratios. Ad-

ditionally, we observe that the basic approach extends directly to modeling mixture

contexts, which provides added model flexibility and is a very natural extension when

physical mixtures of materials with fundamentally different particle sizes are encoun-

tered. We also consider hierarchical modeling, where a single process produces lots of

particles and the data available are (replicated) weight fraction vectors from several

different lots. Supplementary materials for this article are available online.

1 Introduction

We consider contexts where specimens of a granular material are taken from a large supply

of the material and run through a set of progressively finer sieves, and the fractions of the

specimen weight captured on each sieve are measured to provide the basis for a characteri-

zation of the material through its “particle size distribution.” As an aside, we note that in

the case of weight fraction analysis, this is a bit of a misnomer. It has the natural mean-

ing of frequency distribution of size across particles. What is really under discussion is the

cumulative weight fraction of the material as a function of particle size. But, “particle size

distribution” is standard terminology in this area and we use it throughout this discussion.

Particle size distributions are of interest in a number of fields involving powders and other

bulk materials. For background on statistical and other issues in bulk sampling see Duncan
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(1962), Sommer (1986), Gy (1992), Pitard (1993), and Smith (2001). The breadth of interest

in this general problem is indicated by the applications of Maricq et al. (1999) who describe

particle size distributions of emissions from gasoline vehicles, Dalby and Byron (1988) who

compare particle size distributions from pressurized aerosols, and Van der Bilt et al. (1993)

who discuss data analysis methods for studies of chewed food particles. A simple example

of this type of data is found in Lwin (1994) represented here in Figure 1, and available in

the supplemental materials in tabular form. This data set consists of sieving results from

6 specimens of about 2g each of scheelite-ore fines, pre-truncated to contain only particles

below 9.00µm in size. The data are presented in a cumulative weight function form (as is

quite common).

When dealing with bulk materials, it is not uncommon to encounter mixtures of fundamen-

tally different particle types and basic sizes. Examples include mixtures of sediments and

larger rock particles found in stream beds, heterogeneous road paving materials, blended

polymers in industrial applications, fertilizer mixtures, or in pulmonary administration of

drugs, drug micronized particles are usually blended with coarse and fine carrier particles to

improve flowability. So modeling and data analysis methods for mixtures of basic particle

size distributions are also important. For example, Smyth and Hickey (2003) treat a phar-

maceutical example involving a mixture obtained from pressurized metered-dose inhalers.

The basic modeling adopted here is based on Scheaffer (1969), Lwin (1994), and Leyva

(2006). Scheaffer (1969) provided a basis for probabilistic modeling and statistical analy-

sis of particle size data based on standard renewal theory where instead of accumulating

time, the process refers to accumulating weight. Lwin (1994) used the probability structure

of Scheaffer (1969) and considered problems of inference from (replicated) sample weight

fraction data. He noted that a model of random sampling of particles up to a fixed target
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Figure 1: 6 Vectors of Cumulative Weight Fractions, from Lwin (1994)
.

specimen weight produces an approximately multivariate normal distribution for weight frac-

tion vectors, whose parameters depend upon the bivariate distribution of sizes and weights

of particles in the supply of material. Leyva (2006) additionally noted that employing a log-

normal assumption on the (marginal) distribution of particle sizes (which is fairly common,

see Allen 2003) and a power law assumption on the mean and standard deviation of weight

for particles of a given size, one arrives at a relatively simple and fairly standard 4-parameter

multivariate normal approximate distribution for weight fraction vectors.
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The remainder of the article is organized as follows. In Section 2 we provide a review of the

development and notation of Leyva (2006) needed in this paper. Section 3 contains Bayesian

extensions in a one-sample sieving study setting. Section 4 provides a generalization and

development of the mixture ideas with some motivations. Section 5 provides extensions to

a hierarchical setting. Finally, some concluding remarks are provided in Section 6.

2 Background: Log Normal Modeling of Particle Size

Distributions

Let an individual particle size be denoted by S and the corresponding particle weight be

denoted by W . Suppose that a specimen of approximate weight m is to be sampled from

a reservoir of particles and run through a series of k − 1 successively finer sieves. Let

C1, . . . , Ck−1 denote sieve sizes with 0 ≤ C0 < C1 < · · · < Ck ≤ ∞. Then the k par-

ticle size classes are defined by the intervals [Ci−1, Ci) for i = 1, . . . , k, and the observed

specimen weight fractions for the k classes are p1, p2, . . . , pk. Often the smallest size sieve

does not retain all the material and other methods (such as sedimentation) are employed

to characterize the particle distribution for fine material. For this reason C0 is potentially

strictly positive. Now, let S have a probability density f(s|θ) for some parameter vector θ

such that E[W |S = s] = κsη and E[W 2|S = s] = κ′s2η, for positive constants η, κ, and

κ′. The moment conditions ensure that the conditional standard deviation of an observed

particle weight is proportional to its conditional mean. The the first two moments of the

weight distributions for particles in the ith sieve class are then

bi = κ

∫ Ci
Ci−1

sηf(s|θ)ds∫ Ci
Ci−1

f(s|θ)ds
and b2i = κ′

∫ Ci
Ci−1

s2ηf(s|θ)ds∫ Ci
Ci−1

f(s|θ)ds
(1)
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If log(S) ∼ N(µs, σ
2
s) (or possibly truncated lognormal), and one adopts the model just

described for the generation of specimens consisting of random sampling of particles up to

a fixed specimen (total particle) weight m, it follows directly from the analysis of Scheaffer

(1969) (with more details provided in Lwin 1994) that the limiting distribution (as m→∞)

of the vector of observed weight fractions is p ≡ (p1, p2, . . . , pk)′ ∼̇MVN(π,Σ). Here π and

Σ are relatively simple functions of four parameters, (µs, σ
2
s , η, τ), where τ = κ′/(mκ). The

mean vector is π = (π1, π2, . . . , πk)′ for

πi =
Φ(

logCi−µ∗s
σs

)− Φ(
logCi−1−µ∗s

σs
)

Φ(
logCk−µ∗s

σs
)− Φ(

logC0−µ∗s
σs

)
, (2)

where Φ(·) denotes a standard normal cdf and µ∗s = µs + ησ2
s (which is a consequence of the

partial expectations found in (1)). The entries of Σ are also functions of the four parameters

and are

Cov(pi, pu) = τ ·


πi(1− πi)γ∗i + π2

i

 k∑
j=1

πjγ
∗
j − γ

∗
i

 for i = u

πiπu

 k∑
j=1

πjγ
∗
j − γ

∗
i − γ

∗
u

 for i 6= u

(3)

with

γ∗i = b2i /bi = eη(µ∗s+0.5ησ2s )
Φ

(
logCi−(µ∗s+ησ2s )

σs

)
− Φ

(
logCi−1−(µ∗s+ησ2s )

σs

)
Φ
(

logCi−µ∗s
σs

)
− Φ

(
logCi−1−µ∗s

σs

) . (4)

Finally, under the assumptions above, the cumulative weight fraction up to size s is

CW (s) =
Φ
(

log s−µ∗s
σs

)
− Φ

(
logC0−µ∗s

σs

)
Φ
(

logCk−µ∗s
σs

)
− Φ

(
logC0−µ∗s

σs

) (5)
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which is a form employed regularly by practitioners. Though not explicitly investigated here,

it seems reasonable to expect that as size of particles being analyzed decreases, the amount

of material m needed to effectively characterize the particle size distribution would decrease.

The logic just outlined has the virtue of providing a model for a potentially very-high di-

mensional random vector using a multivariate normal distribution that is parsimoniously

parameterized with only four parameters. Also, the four parameters (at least in principle)

have intuitively appealing interpretations. µ∗s and σs describe the normal or truncated nor-

mal “cumulative weight fraction as a function of log size” function. η, which other authors

have pointed to as potentially characterizing the “shape of average particles” and suggested

should be between 0 and 3, and τ , that is some scaling factor that is inversely proportional

to the total weight of the specimen being sieved, are additionally needed to determine the

covariance matrix. It is worth noting that Lwin (1994) arrives at (and employs) the η = 3

version of this approximate distribution from the (very much stronger assumptions) that

(logS, logW ) is bivariate normal, upon assuming that Cov(S,W ) = 3Var(S).

The final form of the (large amount of material sampled) limiting distribution is very attrac-

tive. It is common practice in the analysis of sieving data to treat the cumulative weight

fraction function as having (a parametric sigmoidal shape and most often) the shape of a

normal cdf in the argument log s. That the expected value of p is π cannot be more natu-

ral. Large m multivariate normality is surely plausible. And form (3) provides a defensible

patterned structure for Σ, without which for typical large numbers of sieves and typical (very

small) numbers of observation vectors, anything like formal multivariate statistical inference

seems quite hopeless.

Probably the biggest drawback of the basic multivariate normal modeling just described
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is that although the approximate model guarantees that with probability 1 the observed

weight fractions sum to 1, there is positive (and appreciable for τ large enough) probability

assigned to the event that at least one observed weight fraction is negative. An alternative

to direct use of the limiting distribution for p under the Leyva (2006) assumptions that does

not have this failing is to consider instead the limiting distribution of the vector of log ratios

of k − 1 elements of p to the other (fixed) element of p. For example, choosing p1 as a

reference weight fraction and using the delta method, the limiting distribution (as m→∞)

of q = (log p2 − log p1, log p3 − log p1, . . . , log pk − log p1)′ .∼ MVNk−1(δ,∆) where δ =

(δ2, δ3, . . . , δk)′ with δi = log πi − log π1, for i = 2, . . . , k, and the entries of ∆ are

Cov(qi, qu) = τ ·


1

πi
γ∗i +

1

π1
γ∗1 for i = u

1

π1
γ∗1 for i 6= u

. (6)

In what follows we focus solely on the q-likelihood as (at least in our examples) it seems to

be more numerically stable than the p-likelihood and doesn’t suffer from the drawback just

described.

Finally, there are some formal similarities between the ultimate multivariate normal mod-

eling here for p and q and the compositional data analysis of Aitchison (1986) and others.

But in these works the indexing on entries of p and q is essentially arbitrary (unlike our

situation) and highly specialized parametric forms for means and covariance matrices like

those we will employ is lacking.

8



3 Bayes Analyses of One Sample Sieving Studies

First consider a situation where n specimens of the same supply of material are sieved and

weight fraction vectors p1,p2, . . . ,pn are observed. For an arbitrary choice of reference size

class (we will use size class 1), let qi be the (k− 1)-dimensional vector of log weight fraction

ratios corresponding to pi as considered in the previous section.

In particle size studies there is often more practical interest in parametric functions and

predictions associated with the model than there is in the values of individual model pa-

rameters (µ∗s, σ
2
s , η, τ). In particular, there is scientific interest in values of the parametric

functions CW (s) and CW−1(p) (the cumulative weight fraction function and the func-

tion giving particle sizes corresponding to input cumulative weight fractions), perhaps the

πi = CW (Ci)−CW (Ci−1), and for pnew an additional (unobserved) weight fraction vector,

the values

pnew,i and tnew,i ≡
i∑

j=1

pnew,j . (7)

The last of these is the set of empirical cumulative weight fractions associated with pnew.

For a given s, p, or i, all of the values CW (s), CW−1(p) and πi are very easily estimated

under the Bayesian paradigm which we adopt here.

Under the models of Section 2, the qi have (non-singular) approximately MVNk−1 distribu-

tions. So, let h(q|µ∗s, σs, η, τ) be the MVNk−1(δ,∆) pdf. With this notation, a likelihood

function based on the vectors of log ratios of the weight fractions is

Lq(µ∗s, σ
2
s , η, τ) =

n∏
i=1

h(qi|µ∗s, σ2
s , η, τ). (8)
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For g(µ∗s, σ
2
s , η, τ) a joint prior density for the parameters µ∗s, σs, η, and τ , posterior densities

for the parameters are

gq(µ∗s, σ
2
s , η, τ |q1, q2, . . . , qn) ∝ Lq(µ∗s, σ

2
s , η, τ)g(µ∗s, σ

2
s , η, τ). (9)

Upon employing Markov Chain Monte Carlo to sample from one of these posteriors, cred-

ible intervals for parametric functions of (µ∗s, σs, η, τ) are immediate, as are approximate

predictive posteriors of an additional weight fraction vector pnew.

3.1 An Example

As mentioned in the Introduction, Lwin (1994) used a data set consisting of sieving results

from 6 specimens of about 2g each of scheelite-ore fines, pre-truncated to contain only parti-

cles below 9.00µm in size that was represented here in Figure 1. A relatively ad hoc analysis

of Lwin suggests that roughly µ∗s ≈ 0.25 and σs ≈ 1.29 are consistent with the data. The

maximum likelihood analysis of Leyva (2006) based on the p-likelihood produces point esti-

mates µ̂∗s = 0.217, σ̂s = 1.286, η̂ = 1.177, and τ̂ = 0.001. We here consider Bayes analyses

of the Lwin data based on the q-likelihood.

We considered a number of different prior distributions for (µ∗s, σ
2
s , η, τ). For each we assumed

the parameters to be a priori independent. The resulting posterior distributions under all

the prior specifications were similar, providing some empirical evidence the analysis is more

or less robust to the details of the prior. Because of this, we report only the results obtained

employing µ∗s ∼ N(0, 10), σ2
s ∼ inv-Γ(0.1, 0.1), η ∼ U(0, 3), and τ ∼ Exp(0.01) as priors.

(The second parameter of the normal distribution is the variance and the parameter of the

exponential distribution is the mean.) The prior distribution used for σ2
s is a commonly

used approximately non-informative prior for variances. The prior for µ∗s could be thought
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of as non-informative in the range of values that are plausible for µ∗s (clearly µ∗s is highly

unlikely to be greater than 10). A random walk Metropolis-within-Gibbs algorithm wherein

each parameter is updated individually was used to obtain 1000 MCMC iterates after dis-

carding the first 50,000 as burn-in and thinning by 100 (more details regarding the MCMC

algorithm employed can be found in the supplemental materials). The posterior medians

and 95% credible intervals for the model parameters are recorded in Table 1.

Table 1: Posterior inferences for model parameters for the Lwin data.

Parameter Median 95% Credible Interval

µ∗s 0.2206 (0.1411, 0.3166)
σs 1.2902 (1.1632, 1.4218)
η 1.1482 (0.4627, 1.8991)
τ 0.0010 (0.0003, 0.0022)

The two parameters µ∗s and σs completely determine CW (s) and are determined by CW (s)

while sample information about η and τ is available only through the variance-covariance

structure of the sample weight fraction vectors. So it is not surprising (at least in light of

the fact that log(9.00) = 2.20 and log(1.42) = 0.35) that µ∗s and σs seem far more precisely

determined than the parameters η and τ . It is also worth noting that the inferences shown

in Table 1 are reasonably compatible with the maximum likelihood estimates of the model

parameters based on the q-likelihood.

Figure 2 provides posterior estimates of CW−1(p), CW (s), and pnew. One general impres-

sion provided by the figure is that for the Lwin data the methodology provides a plausible fit

based on the fairly simple 2-parameter form of CW (s) and allows for enough uncertainty in

predictions to make the observed data themselves plausible realizations under the posterior

model. However, there is a slight lack of fit for large size, and for these data the prediction
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Figure 2: Posterior inferences based on Lwin’s data. The dash-dotted lines correspond
to 95% error bands for pnew. The vertical bars correspond to 95% point-wise credible
intervals for CW (s). The horizontal bars indicate 95% credible intervals for the value of
log(s) corresponding to a particular p = CW (s).

bounds don’t seem to mimic the narrowing of the sample paths as log size increases. This

suggests that the 2-parameter form employed for CW (s) may not be quite flexible enough

for the present application, and that the assumptions here are not quite adequate to capture

the pattern of variation in the cumulative sums. In the next section we address an extension

that is able to more flexibly capture the natural sample variability.
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This Bayesian approach to the analysis of one-sample sieving experiments (when n specimens

are drawn from one batch of material ) can be generalized to hierarchical modeling for

situations where specimens are drawn from more than one batch of material taken from a

single process. It seems reasonable in such a case that there is an underlying central weight

fraction distribution for the process, and that the model parameters for each single batch

of material somehow share the characteristics of the process. We elaborate on this line of

thinking in Section 5.

4 Extension to a Mixture of Two Particle Types, Each

with a Lognormal Distribution of Particle Sizes

While it is common to treat a cumulative weight fraction function as having the shape of a

normal cdf in the argument log s, there are applications where this is simply not adequate.

It is also the case that there are contexts in which it is common to purposely mix materials

with very different particle sizes in order to achieve a desired performance of the blend, and

there are other contexts where unintentional mixtures of particle sizes occur when there are

agglomerates. In particular, we have encountered an example where two particle types have

been manufactured and later mixed, and the above modeling clearly needs generalization.

In generalization of the basic modeling of Leyva (2006) suppose that a supply of material

contains two types of particles mixed together in fractions (of particles, not weight) (1− ρ)

and ρ for 0 < ρ < 1. Then, suppose that for particles of Types 1 and 2, logS ∼ N(µsi, σ
2
si),

for i = 1, 2, (or logS ∼ truncated-N(µsi, σ
2
si) in the event that 0 < C0 and/or Ck <∞), and

E[W |S = s] = κis
ηi and E[W 2|S = s] = κ′is

2ηi , i = 1, 2

13



We are here allowing both different distributions of size and different relationships between

size and weight for the two types of particles. Under the model of random sampling of par-

ticles up to a fixed target specimen weight, one may still apply the Scheaffer renewal theory

argument to produce MVN approximations to distributions for p and q. The forms for the

πi and the γi simply have to be changed to reflect the more complicated scenario.

For f(s|µs, σs) a lognormal density with parameters µs and σs, let

I(a, b, η, µs, σs) =

∫ b

a
sηf(s|µs, σs)ds

= exp

(
ηµs +

1

2
η2σ2

s

)(
Φ

(
log b− (µs + ησ2

s)

σs

)
− Φ

(
log a− (µs + ησ2

s)

σs

))
.

Note, for example, that in this notation the fraction of the weight of a large supply of the

material attributed to particles of Type 1 is

Type 1 Weight Fraction =
(1− ρ)κ1I(C0, Ck, η1, µs1, σs1)

(1− ρ)κ1I(C0, Ck, η1, µs1, σs1) + ρκ2I(C0, Ck, η2, µs2, σs2)

and the cumulative weight fraction function is

CW (s) =
(1− ρ)κ1I(C0, s, η1, µs1, σs1) + ρκ2I(C0, s, η2, µs2, σs2)

(1− ρ)κ1I(C0, Ck, η1, µs1, σs1) + ρκ2I(C0, Ck, η2, µs2, σs2)
, (10)

and this latter (for fixed C0 and Ck) is a generalization of the essentially 2-parameter form

(5). Clearly, with form (10) again one has πi = CW (Ci)− CW (Ci−1). Then taking

γi =
(1− ρ)κ′1I(Ci−1, Ci, 2η1, µs1, σs1) + ρκ′2I(Ci−1, Ci, 2η2, µs2, σs2)

(1− ρ)κ1I(Ci−1, Ci, η1, µs1, σs1) + ρκ2I(Ci−1, Ci, η2, µs2, σs2)
(11)

we may write the entries of Σ as in form (3), but substituting γ∗i by γi, and τ by 1/m.

The resultant parametric form substantially generalizes the earlier form (3) (depending, as

14



it does, on many more parameters). This development extends directly to an approximate

distribution for q. In particular, the generalization of the covariance form (6) replaces γ∗i

with γi, and τ with 1/m. Important choices and complications arise as one considers Bayes

inference under the added modeling complexity afforded by the mixture structure. We briefly

note two of these.

A basic question is how much commonality one wants to assume about particle types. In

an example that we will consider in Section 5, the chemical make-up and to some degree

the physical structure of small and large particles were meant to be similar. Such may not

always be the case, but when it is, it suggests the possibility of reducing a list of 11 potential

model parameters ρ, µs1, σs1, η1, κ1, κ
′
1, µs2, σs2, η2, κ2, κ

′
2 to a smaller (and operationally

more manageable) list of 8 parameters ρ, µs1, σs1, µs2, σs2, η, κ, κ
′ through the assumptions

that η1 = η2, κ1 = κ2, and κ′1 = κ′2. In words, there is a single relationship between particle

size and weight operating for both particle types.

But even if one reduces to the set of 8 model parameters, a basic statistical complication of

mixture modeling will remain, in that without imposing some restrictions on the two param-

eter pairs (µs1, σs1) and (µs2, σs2), the model will not be identifiable. One way of dealing

with this is to assume that µs1 < µs2 and in a Bayes analysis, to use a prior distribution for

µs1 and µs2 that places mass 1 on the event that µs1 < µs2. A tractable type of prior that

can be used in this context is truncated bivariate normal, where the truncation is to the set

of (µs1, µs2) satisfying the inequality.

In addition to handling weight fraction vectors that originate from material that is knowingly

a mixture of different particle sizes, the mixture extension can simply be used as means to

provide a methodology that is more flexible in modeling weight fraction vectors than that

15



found in Section 3. To demonstrate this possibility we apply the mixture model idea to the

Lwin data. For sake of computational simplicity we set

η = η1 = η2, κ = κ1 = κ2 and κ′ = κ′1 = κ′2. (12)

This condition simplifies the mean cumulative weight fraction and covariance functions in

the following manner.

CW (s) =
(1− ρ)I(C0, s, η, µs1, σs1) + ρI(C0, s, η, µs2, σs2)

(1− ρ)I(C0, Ck, η, µs1, σs1) + ρI(C0, Ck, η, µs2, σs2)
(13)

and expression (11) becomes

γi =

(
κ′

κ

)
(1− ρ)I(Ci−1, Ci, 2η, µs1, σs1) + ρI(Ci−1, Ci, 2η, µs2, σs2)

(1− ρ)I(Ci−1, Ci, η, µs1, σs1) + ρI(Ci−1, Ci, η, µs2, σs2)

and letting

γ∗i =
( κ
κ′

)
γi =

(1− ρ)I(Ci−1, Ci, 2η, µs1, σs1) + ρI(Ci−1, Ci, 2η, µs2, σs2)

(1− ρ)I(Ci−1, Ci, η, µs1, σs1) + ρI(Ci−1, Ci, η, µs2, σs2)
(14)

with τ = κ′/mκ, the covariance forms (3) and (6) carry over exactly to the mixture context

(once the more complicated (14) replaces (4)).

Therefore under (12), the mixture model for a single vector q has parameters ρ, µs1, σs1, µs2,

σs2, η, and τ , the first 6 of which determine the mean vector (and up to the scale factor τ)

the covariance matrix for the multivariate normal distributions. To do a one-sample Bayes

analysis, one must place priors on these 7 parameters.

To preserve identifiability we employ a truncated bivariate normal prior distribution for
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(µ∗s1, µ
∗
s2)

 µ∗s1

µ∗s2

 iid∼ truncated-BVN


 m10

m20

 ,diag(s2
10, s

2
20)



where the truncation is to the part of R2 where µ∗s1 < µ∗s2, independent of σ2
si
iid∼ inv-Γ(0.1, 0.1),

for i = 1, 2, independent of ρ ∼ Beta(1, 1) and of η ∼ U(0, 3), and τ ∼ Exp(0.01). We set

m10 = m20 = 0 and s2
10 = s2

20 = 10. As in the non-mixture case, inverse Gamma distri-

butions with small scale and shape parameters are typical approximately non-informative

priors for variance parameters. Additionally a piori little is known about ρ, hence a uniform

distribution on the interval (0,1) seems reasonable.

Table 2: Posterior inferences for mixture model parameters for the Lwin data.

Parameter Median 95% Credible Interval Parameter Median 95% Credible Interval

µ∗s1 −0.06 (−0.29, 0.11) η 1.16 (0.48, 1.95)

σ2
s1 0.69 (0.11, 1.21) τ 0.001 (0.000, 0.002)

µ∗s2 1.46 (1.11, 1.61) ρ 0.15 (0.03, 0.34)

σ2
s2 0.16 (0.05, 0.38)

Results from the mixture model applied to the Lwin data can be found in Table 2 and

Figure 3. Notice that the inferences regarding CW (s) and pnew found in Figure 3 are very

similar to those in Figure 2, save the fact that the variability associated with the cumulative

weight fractions at large particle sizes is better captured in the former. Even though ρ was

introduced primarily to provide more flexibility in modeling, it also provides some potentially

valuable information. That is, it appears plausible that the material represented by the Lwin

data is comprised of a mixture of particle types whose composition is roughly 15% for Type
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Figure 3: Results of Lwin data analysis when using a mixture model. The dash-dotted lines
correspond to 95% error bands for pnew. The vertical bars correspond to 95% point-wise
credible intervals for CW (s). The horizontal bars are 95% credible intervals for the value of
log(s) corresponding to a particular p = CW (s).

1 to 85% for Type 2 (by particle count).
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5 Bayes Analyses of Sieving Studies With Hierarchical

Structure

We have addressed the case where from the same supply of material (say, a jth batch), n

weight fraction vectors pj1,pj2, . . . ,pjn are gathered. Here we consider the possibility of

sampling n specimens from each of several different batches indexed by j, themselves all

coming from a fixed process.

Let pji describe the ith replicate taken from the jth batch of material. In order to accom-

modate samples from different batches, we might modify the model in Section 3 by allowing

the model parameters µ∗s and σ2
s to vary batch-to-batch around the characteristics of the

process that generated the different batches.

That is, one could suppose that across batches j, µ∗sj
iid∼ N(µ∗sprocess, λ

2) independent of

σ2
sj

iid∼ inv-Γ(α, β). One might further adopt independent priors with µ∗sprocess ∼ N(µ0, σ
2
process0),

λ2 ∼ inv-Γ(a0, b0), and α, β ∼ Exp(c0). And, in light of the potential interpretation of η and

τ as parameters relating particle weight to size, it is plausible to assume all batches have the

same parameters η and τ and use the (also independent) priors η ∼ U(0, 3) and τ ∼ Exp(λ0).

As in the one-sample case, using an MCMC algorithm we can hope to obtain approximate

posterior distributions of the model parameters and parametric functions. Also, posterior

predictive distributions for values of an unobserved batch cumulative weight fraction function

or an observed vector of weight fractions from a new batch are possible.
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5.1 An Example

Sieving data from plastic-bonded explosive (PBX) 9501 powder collected at the Mason &

Hanger-Silas Mason Co., Inc., Pantex Plant previously studied by Huckett and Wendelberger

(2002) were obtained from scientists at Los Alamos National Laboratory. These represent

powder samples obtained from 6 different batches of material, 2 specimens from each batch.

Each sample was passed through a series of 21 sieves, producing measured weight fractions

for k = 22 size intervals with C0 = 0 and C22 =∞. These data are represented in Figure 4

and are available in tabular form in the supplemental materials.

We learned from the subject matter scientists that the material represented in Figure 4

was in fact produced by (purposely) separately manufacturing “small” particles and “large”

particles of the same basic substance and then mixing small and large particle lots. This

reality makes lognormal modeling of particle sizes for the PBX powder implausible, and

strongly suggests use of a hierarchical version of the mixture modeling of Section 4. So

before finishing our analysis of these PBX data, we consider some generalities for hierarchical

modeling in a mixture context, based on the development of Section 4.

5.2 Hierarchical Analysis in a Mixture Setting

We consider the special case of hierarchical modeling for mixture lots, where one assumes

that there is a single fixed (but unknown) relationship between size and weight operating

for both particle types and across all lots. That is, once again we consider the parameters in

display (12) to all be fixed unknown parameters that do not vary with lot. For the Lwin data

this condition was employed for sake of simplicity, here it is warranted by the process which

created the material. On the other hand, assume that the parameters µs1, σs1, µs2 and σs2

are all lot-specific, varying according to “process distributions.” As with the Lwin data set
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Figure 4: 12 vectors of cumulative weight fractions from the PBX data.

(12) facilitates the use of the mixture cumulative weight covariance functions provided in

display (13) and (14).

In the present mixture context, a generalization of the structure suggested in Section 4 is

this. Continue to abbreviate as µ∗s = µs + ησ2
s . Without the mixture assumption, this value

locates the “center” of the cumulative weight, and as such is more directly interpretable than
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is µs. One might assume that across batches

 µ∗s1j

µ∗s2j

 iid∼ truncated-BVN


 µ∗sprocess1

µ∗sprocess2

 ,diag(λ2
1, λ

2
2)



where the truncation is to the part of R2 where µs1j < µs2j , independent of σ2
s1j

iid∼

inv-Γ(α1, β1), independent of σ2
s2j

iid∼ inv-Γ(α2, β2), independent of ρ
iid∼ Beta(α, β).

Further one might adopt independent priors

 µ∗sprocess1

µ∗sprocess2

 iid∼ truncated-BVN


 µ10

µ20

 ,diag(σ2
process10, σ

2
process20)

 ,

λ2
i ∼ inv-Γ(a0, b0), α, αi, β, βi ∼ Exp(c0), for i = 1, 2; η ∼ U(0, 3) and τ ∼ Exp(λ0), where

all values with a 0 subscript are user-supplied constants. Then one can use a Gibbs or

MH-within-Gibbs MCMC algorithm to get approximate posterior distributions of the model

parameters, interesting parametric functions, and predictions of future “observations” of

various types.

The values selected as prior distribution parameters for our application were a0 = 0.1,

b0 = 0.1, c0 = 1000 and σ2
process10 = 10 andσ2

process20 = 1 and values µ10 = 2.5, µ20 = 5.0,

and λ0 = 0.01. The values employed for σ2
process10 and σ2

process20 were intended to provide a

relatively “flat” or non-informative prior for plausible locations of the batch-specific cumu-

lative weight functions. The means (µ10, µ20) were chosen to be log s values with average

cumulative weight fractions around 0.25 and 0.75. Values of a0 and b0 provide a common

approximately non-informative prior for variance parameters.
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Table 3: Posterior inferences for mixture model parameters for the PBX Data.

Parameter Median 95% Credible Interval Parameter Median 95% Credible Interval

µ∗sprocess1 2.223 (1.778, 2.671) η 0.005 (0.000, 0.017)

µσs1 1.872 (1.187, 2.554) τ 0.002 (0.001, 0.003)

µ∗sprocess2 5.041 (4.711, 5.249) µρ 0.653 (0.585, 0.714)

µσs2 0.378 (0.320, 0.442)

Using these constants, Bayes analyses based on logs of weight fraction ratios were made. Pos-

terior inferences for model parameters are in Table 3 (where, for i = 1, 2, µσsi = βi/(αi− 1),

and µρ = α/(α + β)). Notice in particular that posterior inferences for µσ1 and µσ2 are

clearly different and provide quantitative confirmation that the PBX material is composed

of a mixture of two particle types. It seems that (on a log scale) small particles are less

consistent in size that are big ones. We note as well that the very small value for η indicated

by this analysis probably closes the possibility of a sensible physical interpretation of this

model parameter in terms of shape properties of PBX particles. The parameter is simply a

partial identifier for a useful member of a plausible parametric family of multivariate normal

models for weight fractions or log ratios of the same.

Figure 5 shows the original 12 cumulative weight fraction functions, 6 fitted batch-specific

functions CW (s)j , and 95% prediction limits for both values of CW (s)new and cumulative

pnew. CW (s)j are obtained by plugging posterior medians into form (13), CW (s)new are

the batch cumulative weight fractions as functions of size for a new batch taken from the

process, and cumulative pnew are empirical cumulative weight fractions for a single specimen

from a new batch (in some sense an observable version of CW (s)new). The fact that there is

not much difference between these intervals is consistent with the fact that the major part of
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Figure 5: Fit for the PBX data.

the variation seen in the data of Figure 4 is between-batch variation, not variation between

specimens for a given batch.

The graphic suggests that the models used here are flexible enough to adequately fit the

existing lot cumulative weight fraction functions and to quantify process variation at small

log particle sizes. However, it seems that process variation at large particle sizes is overstated

by the present fitting. Therefore, future research could involve model generalizations that
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allow a bit more flexibility in modeling variability. This could be carried out for example, by

allowing σ2
s to depend on log(s). This shortcoming admitted, it does seem like the analyses

provide relatively transparent and straightforward methods of inference and prediction that

are of subject matter importance.

6 Conclusions

The Bayes analyses presented in this article have the virtues of employing a very popular

and standard form for CW (s) and generalizations thereof, and defensible patterned forms

for covariance matrices of observables. They further enable natural hierarchical and mixture

modeling of weight fraction vectors. They provide rational/principled ways of making in-

ferences on parametric functions that have subject matter meaning, and provide defensible

predictions. Our graphics point out some aspects of less than perfect model fit in the particu-

lar examples employed here and the benefit of incorporating the added flexibility afforded by

the mixture generalization. A reasonable extension for further research would be to consider

mixtures of k > 2 types of particles. This should provide an even more flexible methodology

relative to the k = 2 particle mixture. However, the flexibility would come at a potentially

large computation cost and the complications regarding identifiability will greatly increase.

We remark also that the current covariance structures model only variation in specimen

weight fractions due to sampling particles. Another generalization that we have considered

is to allow for measurement noise in the determination of weights. Ultimately however, what

has been presented here is the fundamental basis of a new flexible and effective methodology

for the analysis of particle sieving studies.
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7 Supplementary Materials

Materials available on-line are

1) SupplementaryMaterial.pdf, a document containing a listing of the data sets and

more details regarding the MCMC algorithms,

2) LwinAnalysis, a zipped folder contaning C and R code that enables the analysis of the

Lwin data example, and

3) PBXanalysis, a zipped folder containing C and R code that enables the analysis of the

PBX data example.
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