
Classification via Bayesian Nonparametric Learning of Affine
Subspaces

Garritt Page
Departamento de Estadística

Pontificia Universidad Católica de Chile
page@mat.puc.cl

Abhishek Bhattacharya
Indian Statistical Institute

Kolkata India
abhishek@isical.ac.in

David Dunson
Department of Statistical Science

Duke University
dunson@stat.duke.edu

December 12, 2012

Abstract

It has become common for data sets to contain large numbers of variables in studies conducted

in areas such as genetics, machine vision, image analysis and many others. When analyzing such data,

parametric models are often too inflexible while nonparametric procedures tend to be non-robust because

of insufficient data on these high dimensional spaces. This is particularly true when interest lies in building

efficient classifiers in the presence of many predictor variables. When dealing with these types of data,

it is often the case that most of the variability tends to lie along a few directions, or more generally

along a much smaller dimensional submanifold of the data space. In this article, we propose a class of

models that flexibly learn about this submanifold while simultaneously performing dimension reduction

in classification. This methodology, allows the cell probabilities to vary nonparametrically based on a

few coordinates expressed as linear combinations of the predictors. Also, as opposed to many black-box

methods for dimensionality reduction, the proposed model is appealing in having clearly interpretable

and identifiable parameters which provide insight into which predictors are important in determining

accurate classification boundaries. Gibbs sampling methods are developed for posterior computation,

and the methods are illustrated using simulated and real data applications.

Key Words: Classifier; Dimension reduction; Variable selection; Nonparametric Bayes
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1 Introduction

Experiments or studies carried out in areas such as epidemiology, image analysis, and machine vision (to

name a few) are producing data sets whose dimension continues to increase. The increased dimension is

often caused by collecting a large number of predictor variables with the goal of building efficient classi-

fiers (or regression models) that further understanding regarding the associations between the response of

interest (Y ) and predictors (X). Because such data sets have become commonplace, designing data efficient

inference techniques that scale to high dimensional Euclidean and even non-Euclidean spaces have attracted

considerable attention in the statistical and machine learning literature.

In addition to being able to scale to higher dimensions, it is often highly desirable for methods to provide

insight regarding the underlying mechanisms of the phenomena being studied. For example, one might want

to characterize the joint effect of a subset of covariates on an outcome of interest and determine which are

important. As an illustration, we consider a sub-study of the US Collaborative Perinatal Project (CPP) (a

reproductive epidemiology study) which collected data on pregnancy outcomes together with demographic

factors, and levels of exposure to a wide variety of environmental contaminants. Identifying a collection

of these variables that influence preterm and/or small-for-gestational-age babies at birth was of particular

interest. Also of interest was to ability to create an index of an individual’s exposure burden and characterize

the joint health effects of the exposures. In situations like these, many methods proposed in the literature

(such as support vector machines (SVM), Cortes and Vapnik 1995, neural networks Hastie et al. 2008,

and fully Bayesian hierachical probability models Chen et al. 2010) are inadequate as they are algorithmic

or highly parameterized black boxes and apart from classification (or curve fitting), provide no further

information specific to the problem being studied. We will revisit this study in Section 5.3.

When dealing with a high dimensional feature space, it is typically the case that parametric models

are too rigid and don’t adapt well to high dimensions while flexible nonparametric approaches suffer from

the well known curse of dimensionality. With this in mind, an appealing approach is to make procedures

more scalable to high dimensions by learning a lower dimensional subspace the covariates are concentrated

near. If the subspace were known, then one could model the projections of X onto that subspace with a

nonparametric density model, while using some simple parametric distribution on the orthogonal residual

vector. A robust classifier (or regression model) would be attained by fitting a flexible model on only a

selected few coordinates of the projections. These coordinates would then act as surrogate predictors that

more efficiently explain the variability in Y .

Building classifiers using coordinates of projections is similar to what has been called sufficient dimension
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reduction (SDR) (Zhu and Zeng (2006), Li (1991) and Cook and Weisberg (1991)). Typically, this is a

two stage approach the first involving the estimation of a lower dimensional subspace (often called the

central subspace) and the second using these coordinates as predictors in some classification (or regression)

method (Li and Wang 2007). To avoid the two stage approach (and hence incorporate subspace estimation

uncertainty in inferences) Wang and Xia (2008) proposed an SDR approach that handles subspace estimation

and regression simultaneously by modeling the conditional density of Y given sufficient predictors using

kernel smoothing. Recently Reich et al. (2011) developed a Bayesian method that simultaneously performs

regression while estimating the central subspace by placing a Gaussian prior on a basis of the subspace and

using a finite mixture to model Y |X. Tokdar et al. (2010) also developed a Bayesian approach but assign a

uniform prior to the space of d-dimensional linear subspaces of <p (where d is dimension of subspace and p

dimension of feature space) and modeled the density of Y |X with log Gaussian process.

We approach the problem from a completely different perspective. Instead of modeling Y |X directly,

we first propose modeling (Y,X) jointly through a mixture of product kernels and then employ the flexible

conditional model that is induced by the joint. The idea of using a joint model to induce a flexible model

on the conditional was first proposed by Müller et al. (1996) and developed further by Bhattacharya and

Dunson (2012) and Dunson and Bhattacharya (2011). However, this earlier work lacked the dimensionality

reduction component. Our proposed framework very flexibly and uniquely identifies a lower dimensional

affine subspace, while simultaneously modeling the coordinates of the projections of X onto that subspace

using an infinite mixture of Gaussians. Then the data component orthogonal to that subspace is modeled

independently with a zero mean Gaussian.

Among all possible coordinate choices, we use isometric coordinates (those which preserve the geometry

of the space). To obtain such coordinates, only orthogonal bases for the subspace will be considered. In ad-

dition to interpretability and identifiability, there are computational advantages as matrix inversion is equal

to transpose. Thus mixture component contours are not required to be homogeneous, but rather can take

on a sparse singular value decomposition type representation. This accommodates potentially large non-

homogeneous covariance matrices without sacrificing flexibility. An important feature of the methodology

is that intuitively appealing interpretations accompany model parameters and therefore provide information

regarding covariates (or linear combinations thereof) that directly influence the response. Such interpretabil-

ity is crucial in many applications, such as epidemiology, and there is a clear lack of interpretability for most

methods for flexible classification or prediction from correlated covariates.

The remainder of this article is organized as follows. Section 2 provides a few required geometric ideas
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and introduces the notation needed to describe the model. Section 3 first details the marginal model for

X and then the classification model. Additionally, theoretical results dealing with posterior consistency,

model identifiability and parameter estimation are provided. Section 4 details computational strategies

while Section 5 provides some numerical examples using simulated and real data. We finish with some

concluding remarks in Section 6.

2 Preliminaries

Before detailing general modeling strategies, we define a few necessary terms. Additionally, since we adopt

a geometric perspective, a brief background to some basic geometric ideas is provided.

A k-dimensional affine subspace on <m can be expressed as S = {Ry + θ : y ∈ <m} where R is a

m ×m rank k projection matrix (it satisfies R = R′ = R2, rank(R) = k) and θ ∈ <m satisfies Rθ = 0.

Since there is a one to one correspondence between the subspace S and the pair (R,θ), identifying the pair

(R,θ) is sufficient to learn S. The projection of some x ∈ <m into S is the point x0 ∈ <m that satisfies

‖x − x0‖ = min{‖x − y‖ : y ∈ S} (here ‖ · ‖ denotes the Euclidean norm). It turns out that for any S

defined as above the solution of this minimization problem is x0 = Rx+θ. Therefore, θ is the projection of

the origin into S and R is the projection matrix of the shifted linear subspace L = S − θ = {Ry : y ∈ <m}.

We use PrS(x) to denote the projection of x ∈ <m into S.

Let U be a m × k matrix whose columns {U1, . . . ,Uk} form a basis for the column space of R. Any

x ∈ S can be given coordinates x̃ ∈ <k such that x = Ux̃ + θ. If U is chosen to be orthonormal (i.e.,

U ′U = Ik and R = UU ′), then the coordinates are isometric. That is, they preserve the inner product on

S (and hence volume and distances). With such a basis, the projection PrS(x) of an arbitrary x ∈ <m into

S has isometric coordinates x̃ = U ′x. Thus, U gives k mutually perpendicular ‘directions’ to S while θ may

be viewed as the ‘origin’ of S. We will call θ the origin and U an orientation for S.

The residual of x ∈ <m (which we denote as RS(x) = x − PrS(x)) lies on a linear subspace that is

perpendicular to L. That is, RS(x) ∈ S⊥ where S⊥ = {(I − R)y : y ∈ <m}. Notice that the projection

matrix of S⊥ is I −R. Now if we let V denote an orthonormal basis for the column space of I −R (i.e.,

V ′V = Im−k, V V ′ = I −R), then isometric residual coordinates are given by V ′x ∈ <m−k.

If a sample x ∈ <m lies close to a much smaller dimensional subspace (S), of dimension k, it would

be natural to assume that the data residuals are centered around 0 with small variability while the data

projected into S comes from a possibly multi-modal distribution supported on S. Figure 1 illustrates such
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a sample data cloud. The observations are drawn from a two-component mixture of bivariate normals

with cluster centers (1, 0) and (0, 1) and band-width of 0.5. As a result they are clustered around the line

x1 + x2 = 1 which can be characterized as an affine subspace of <2 (details follow).
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Figure 1: Graphical representation of the affine subspace (S), the orthogonal shift (θ), and the projection
of a point into S (these are the solid dots with particular emphasis given to Rx+ θ).

Now if Q is a distribution on <m with finite second order moments, then for d ≤ m we define the d

principal affine subspace of Q as

argmin
S

Risk(S) =

∫
<m
‖x− PrS(x)‖2Q(dx). (2.1)

The minimization is carried out over all d-dimensional affine subspaces S. It can be shown that the minimum

value always exists and is
∑m
d+1 λj , where λ1 ≥ . . . ≥ λm are the ordered eigenvalues of Q’s covariance matrix.

A unique minimizer (which is denoted by So) exists if and only if λd > λd+1. When So exists, its projection

matrix is R = UU ′ where U is any orthonormal basis for the subspace spanned by a set of d independent

eigenvectors that correspond to the first d eigenvalues of the covariance matrix of Q. Furthermore, for µ the
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mean associated with Q, the origin of So is θ = (I −R)µ. One thing to notice is that when d = 0, then So

is the point set µ.

In the case that d is unknown, a reasonable strategy to find an optimal value of d would be to minimize

the following risk function

Risk(d, S) = f(d) +

∫
<m
‖x− PrS(x)‖2Q(dx), 0 ≤ d ≤ m (2.2)

in terms of d and S where f is a fixed increasing convex function. If f is linear, say, f(d) = ad, a > 0, then

(2.2) has a unique minimizer if and only if λd+1 < a < λd for some d, with λ0 = ∞ and λm+1 = 0. The

minimizing dimension do is that value of d while the optimal space So is the do principal affine subspace.

We will call do the principal dimension of Q. For the observations in Figure 1, the principal dimension is

do = 1 with principal affine subspace

So =


 1/2 −1/2

−1/2 1/2

x+

 1/2

1/2

 : x ∈ <2

 .

We end this section by introducing the notation used throughout the remainder of the article. LetM(S)

denote the space of all probabilities on the space S. M(m, k) will denote real matrices of order m× k (with

M(m) denoting the special case of m = k), M+(m) will denote the space of all m × m positive definite

(p.d.) matrices. For U ∈ M(m, k), N (U) will denote the subspace spanned by the vectors orthogonal to

the columns of U . We will represent the space of all m×m rank k projection matrices by Pk,m. That is,

Pk,m = {R ∈M(m) : R = R′ = R2, rank(R) = k}.

One important manifold referred to in this paper is the Steifel manifold (denoted by Vk,m) which is the space

whose points are k-frames in <m (here k-frame refers to a set of k orthonormal vectors in <m). That is,

Vk,m = {A ∈M(m, k) : A′A = Ik}.

The space Vk,m is a compact non-Euclidean Riemannian manifold. Because Vk,m is embedded in the Eu-

clidean space M(m, k), it inherits the Riemannian inner product which can be used to define the volume

form, which in turn can be used as the base measure to construct parametric families of densities. Several

parametric densities have been studied on this space, and exact or MCMC sampling procedures exist. For
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details, see Chikuse (2003) and Hoff (2007). A density that will be used quite extensively is the so called

Bingham-von Mises-Fisher density which has the following form

BMF (x;A,B,C) ∝ etr(A′x+Cx′Bx).

The parameters are A ∈ M(k,m), B ∈ M(k) symmetric and C ∈ M(m), while etr denotes exponential

trace. As a special case, we obtain the uniform distribution which has the constant density 1/Vol(Vk,m).

3 Principal Subspace Classifier

The principal aim of this article is to develop interpretable methods for efficiently modeling the conditional

of Y given X, that can be used in classification, conditional density estimation or prediction. Since we

will approach this problem by modeling (Y,X) jointly with a mixture of product kernels, we first focus on

the model for X (which is a novel contribution of this article). The model is developed from a geometric

perspective focusing on the density estimation of X. Theory regarding the method’s soundness, parameter

identifiability, and parameter estimation is also provided.

3.1 Density Estimation of X via Coordinate Modeling

Consider a random variable X ∈ <m. Let there be a k dimensional affine subspace S, 0 ≤ k ≤ m, with

projection matrix R and origin θ such that the projection of X into this subspace follows a location mixture

density on the subspace (with respect to its volume form) given by

z = PrS(X) ∼ f(z|U ,A) =

∫
S

(2π)−k/2|U ′AU |1/2 exp

{
− 1

2
(z −w)′A(z −w)

}
Q(dw)

where z ∈ S, Q ∈M(S), U ∈ Vk,m is any orientation for S, and A is a m×m positive semi-definite (p.s.d.)

matrix such that U ′AU ∈ M+(k) is positive definite (p.d.). Note that the density expression depends on

U only through R = UU ′.

In other words, conditional on latent variablew ∈ S, the projection follows a Gaussian density conditioned

on subspace S: f(z|w,U ,A) ∝ exp{− 1
2 (z − w)′A(z − w)} and we integrate out w to obtain f(z|U ,A).

A general choice of A for this to be a valid density (besides being p.d.) could be A = UΣ−10 U ′ with

Σ0 ∈ M+(k). Using change of variables it can be shown that the isometric coordinates U ′X of PrS(X)
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follow a non-parametric Gaussian mixture model on <k given by

U ′X ∼
∫
<k
Nk(·;µ,Σ0)P (dµ), P ∈M(<k), (3.1)

where µ = U ′w for w ∈ S.

Independently, we assume that the residual RS(X) follows a mean zero homogeneous Gaussian density

(with respect to its volume form) conditioned on S⊥ given by

r = RS(X) ∼ g(r|σ) ∝ σ−(m−k) exp

{
− ‖r‖

2

2σ2

}
,

r ∈ S⊥ and parameter σ > 0. If k = m, then S⊥ = {0} and RS(X) = 0. As a result, with any orientation

V ∈ Vm−k,m for S⊥, the isometric coordinates V ′X of RS(X) follow the Gaussian density

V ′X ∼ Nm−k(V ′θ, σ2Im−k). (3.2)

Combine equations (3.1) and (3.2) to get the full density of X as

X ∼ f(x; Θ) =

∫
<k
Nm(x;φ(µ),Σ)P (dµ), (3.3)

φ(µ) = Uµ+ θ, Σ = U(Σ0 − σ2Ik)U ′ + σ2Im, (3.4)

with parameters Θ = (k,U ,θ,Σ0, σ, P ). We will refer to (3.3) and (3.4) as the Principal Subspace Density

(PSD) model.

The final form of X’s density model is attractive. We are able to use a flexible multimodal density model

on a few data coordinates (which are chosen using a suitable basis) and an independent centered Gaussian

structure on the remaining coordinates allows efficient density estimation on potentially high dimensional

spaces. In some sense what has been developed here from a geometric perspective could be considered a

Bayesian nonparametric extension of the probabilistic principal component analysis of Tipping and Bishop

(1999) and Nyamundanda et al. (2010). Furthermore, the model could also be thought of as a nonparametric

extension of the Bayesian Gaussian process latent variable models of Titsias and Lawrence (2010) and SVD

models of Hoff (2007). A few more comments regarding the density model follow.

An alternative way to identify the intercept θ would be to set it equal to E(X). However, this would

require the prior on P to be such that µ̄ ≡
∫
µP (dµ) = 0 making the commonly used Dirichlet process an
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inappropriate prior for P . For this reason, we set θ to be the origin of S instead.

With Σ0 p.d. and σ2 > 0, the within cluster covariance Σ lies inM+(m) and has a sparse representation

without being homogeneous. The residual variance σ2 dictates how “close"X lies to S, with σ2 = 0 implying

thatX ∈ S. In (3.3), one may mix across Σ0 by replacing P (dµ) by P (dµ dΣ0) and achieve more generality.

Without loss of generality, we can make model (3.3) even more sparse by allowing Σ0 to be a p.d.

diagonal matrix. To show that no generality is lost, consider a singular value decomposition (s.v.d.) of

an unstructured ODO′ = Σ0, with O ∈ O(k), and replace Σ0 by diagonal D, and U by UO′. If P is

appropriately transformed, then the model is unaffected. With a diagonal Σ0, Σ has k eigenvalues from Σ0

and the rest all equal to σ2. Furthermore, the columns of U are the orthonormal eigenvectors corresponding

to Σ0.

It is straightforward to check that S = So for the model if and only if Σ0+
∫
<k(µ−µ̄)(µ−µ̄)′P (dµ) > σ2Ik.

(Here A > B refers to A−B being p.d.) This holds, for example, when Σ0 ≥ σ2Ik and P is non-degenerate.

Further, k is the principal dimension of X for a range of risk functions as in (2.2) with linear f .

3.2 Consistency of Posterior Distribution

When working with nonparametric Bayesian models it is important to establish posterior consistency. We

place priors on the parameters that are fully flexible in the sense that the prior can generate densities

arbitrarily close to any multivariate density (ruling out very irregular densities). We also show that the

posterior will concentrate in arbitrarily small neighborhoods of the data generating density as a larger

sample is collected. Two types of neighborhoods are considered: weak and total variation. Strong posterior

consistency (total variation neighborhoods) is clearly a more interesting result. That said, we include details

regarding weak posterior consistency as they are helpful in developing intuition regarding the regularity

conditions used in the strong consistency results.

3.2.1 Weak Posterior Consistency

Consider a mixture density model f as in (3.3). Let D(<m) denote the space of all densities on <m. Let

Πf denote the prior induced on D(<m) through the model and suitable priors on the parameters. Theorem

3.1 shows that Πf satisfies the Kullback-Leibler (KL) condition at the true density ft on <m. That is, for

any ε > 0, Πf (Kε(ft)) > 0, where Kε(ft) = {f : KL(ft; f) < ε} denotes a ε-sized KL neighborhood of ft

and KL(ft; f) =
∫

log ft
f ftdx is the KL divergence. As a result, using the Schwartz (1965) theorem, weak

posterior consistency follows. That is, given a random sample Xn = X1, . . . ,Xn i.i.d. ft, the posterior
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probability of any weak open neighborhood of ft converges to 1 a.s. ft.

Let p(k) denote the prior distribution of k. We consider discrete priors that are supported on the set

{0, . . . ,m}. Let π1(U ,θ|k) denote some joint prior distribution of U and θ that has support on {(U ,θ) ∈

Vk,m × <m : U ′θ = 0}. As previously recommended, we consider a diagonal Σ0 = diag(σ2
1 , . . . , σ

2
k) and set

a joint prior on the vector σ = (σ, σ1, . . . , σk) ∈ (<+)k+1 that we denote with π2(σ|k). Further, we assume

that parameters (U , θ), σ, and P are jointly independent given k. That said, Theorem 3.1 can be easily

adapted to other prior choices. We also consider the following regularity conditions on the true density ft.

A1: 0 < ft(x) < A for some constant A for all x ∈ <m.

A2: |
∫

log{ft(x)}ft(x)dx| <∞.

A3: For some δ > 0,
∫

log ft(x)
fδ(x)

ft(x)dx <∞, where fδ(x) = infy:‖y−x‖<δ ft(y).

A4: For some α > 0,
∫
‖x‖2(1+α)mft(x)dx <∞.

Theorem 3.1. Set the prior distributions for k, (U , θ), σ, and P to those described previously such that

p(m) > 0, π2(<+ × (0, ε)m|k = m) > 0 for any ε > 0, and the conditional prior on P given k = m contains

Pft in its weak support. Then under assumptions A1-A4 on ft, the KL condition is satisfied by Πf at ft.

Proof. The result follows if it can be proved that Πf (Kε(ft)|k = m,U) > 0 for all ε > 0 and U ∈ O(m),

because then

Πf (Kε(ft)) ≥ p(m)

∫
O(m)

Πf (Kε(ft)|k = m,U)dπ1(U |k = m) > 0

Now, given k = m and U , density (3.3) can be expressed as

f(x;Q,Σ) =

∫
<m

Nm(x;ν,Σ)Q(dν), (3.5)

with Q = P ◦ φ−1. Here φ(x) = Ux, and Σ = UΣ0U
′. The isomorphism φ : <m → <m being continuous

and surjective ensures the same for the mapping P 7→ Q. This in turn ensures that under the assumptions

of Theorem (3.1), the prior on P and σ induces a prior on Q that contains Pft in its weak support and an

independent prior on Σ which induces a prior on its maximum eigen-value that contains 0 in its support.

Then with a slight modification to the proof of Theorem 2 in Wu and Ghosal (2010), under assumptions

A1-A4 on ft, we can show that ft is in the KL support of Πf .
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3.2.2 Strong Posterior Consistency

Using the density model (3.3) for ft, Theorem 3.5 (see below) establishes strong posterior consistency. That

is, the posterior probability of any total variation (or L1 or strong) neighborhood of ft converges to 1 almost

surely or in probability, as the sample size tends to infinity. The priors on the parameters are chosen as in

Section 3.2.1. To be more specific, the conditional prior on P given k (k ≥ 1) is chosen to be a Dirichlet

process DP (wkPk) (wk > 0, Pk ∈ M(<k)). The proof requires the following three Lemmas. The proof of

Lemma (3.2) can be found in Barron (1988), while the proofs of Lemmas (3.3) and (3.4) are provided in the

appendix.

In what follows Br,m refers to the set {x ∈ <m : ‖x‖ ≤ r}. For a subset D of densities and ε > 0, the

L1-metric entropy N(ε,D) is defined as the logarithm of the minimum number of ε-sized (or smaller) L1

subsets needed to cover D.

Lemma 3.2. Suppose that ft is in the KL support of the prior Πf on the density space D(<m). For every

ε > 0, if we can partition D(<m) as Dnε ∪ Dcnε such that N(ε,Dnε)/n −→ 0 and Pr(Dc
nε|Xn) −→ 0 a.s.

or in probability Pft , then the posterior probability of any L1 neighborhood of ft converges to 1 a.s. or in

probability Pft .

Lemma 3.3. For positive sequences hn → 0 and rn →∞ and ε > 0, define a sequence of subsets of D(<m)

as

Dnε = {f(·; Θ) : Θ ∈ Hnε}, Hnε = {Θ : min(σ) ≥ hn, ‖θ‖ ≤ rn, P (Bcrn,k) < ε}

with f(·; Θ) as in (3.3). Set a prior on the density parameters as in Section 3.2.1. Assume that supp(π2(·|k)) ⊆

[0, B]k+1 for some B > 0 for all 0 ≤ k ≤ m. Then N(ε,Dnε) ≤ C(rn/hn)m where C is a constant independent

of n.

Lemma 3.4. Set a prior as in Lemma 3.3 with a DP (wkPk) prior on P given k, k ≥ 1. Assume that the

base probability Pk has a density pk which is positive and continuous on <k. Assume that there exist positive

sequences hn → 0 and rn →∞ such that

B1 : lim
n→∞

nδ−1kn h
−k
n exp(−r2n/8B2) = 0

holds where

δkn = inf{pk(µ) : µ ∈ <k, ‖µ‖ ≤ B + rn/2}, k = 1, . . . ,m.
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Also assume that under the prior π2(·|k) on σ, Pr(min(σ) < hn|k) decays exponentially. Then under the

assumptions of Theorem 3.1, for any ε > 0, k ≥ 1,

Eft
{
Pr
(
P (Bcrn,k) ≥ ε

∣∣k,Xn

)}
−→ 0.

If B1 is strengthed to

B1′ :

∞∑
n=1

nδ−1kn h
−k
n exp(−r2n/8B2) <∞,

and the sequence rn satisfies
∑∞
n=1 r

−2(1+α)m
n <∞ with α as in Assumption A4, then the conclusion can be

strengthed to
∞∑
n=1

Eft
{
Pr
(
P (Bcrn,k) ≥ ε

∣∣k,Xn

)}
<∞.

With these three Lemmas we are now able to state and proof the theorem that ensures strong posterior

consistency is attained.

Theorem 3.5. Consider a prior and sequences hn and rn for which the assumptions of Lemma 3.4 are

satisfied. Further suppose that n−1(rn/hn)m −→ 0. Also assume that the sequence rn and the prior π1(·|k)

on (U ,θ) satisfy the condition Pr(‖θ‖ > rn|k) decays exponentially for k ≤ m − 1. Assume that the true

density satisfies the conditions of Theorem 3.1. Then the posterior probability of any L1 neighborhood of ft

converges to 1 in probability or almost surely depending on assumption B1 or B1′.

Proof. Theorem 3.1 implies that the KL condition is satisfied. Consider the partition D(<m) = Dnε ∪ Dcnε.

Then N(ε,Dnε)/n −→ 0. Write

Pr(Dcnε|Xn) = Pr
(
{f(.; Θ) : Θ ∈ Hc

nε}
∣∣Xn

)
,

where

Hc
nε = {Θ : min(σ) < hn} ∪ {Θ : ‖θ‖ > rn} ∪ {Θ : P (Bcrnk) > ε}.

The posterior probability of the first two sets above converge to 0 a.s. because the prior probability decays

exponentially and the prior satisfies the KL condition. Note that

Pr
(
{Θ : P (Bcrnk) > ε}

∣∣Xn

)
≤

m∑
j=1

Pr
(
{Θ : P (Bcrnk) > ε}

∣∣Xn, k = j
)

and Lemma 3.4 implies that this probability converges to 0 in probability/a.s. based on Assumption B1/B1′.
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Using Lemma 3.2, the result follows.

Now we give an example of a prior that satisfies the conditions of Theorem 3.5. Any discrete distribution

on {0, . . . ,m} having m in its support can be used as the prior p for k. Given k (k ≥ 1), we draw U from a

density on Vk,m. Given k and U , under π1, θ is drawn from a density on the vector-space N (U) if k < m.

If k = m, then θ = 0. When k < m, we set θ = rθ̃ with r and θ̃ drawn independently from <+ and the set

{θ̃ ∈ <m : ‖θ̃‖ = 1, θ̃′U = 0} respectively. The scalar ra is drawn from a Gamma density for appropriate

a > 0. As a special case, a Gaussian density (conditioned to live on N (U)) can be used for θ when θ̃ is

drawn uniformly, a = 2 and r2 ∼ Gam(1, σ0), σ0 > 0. Then θ has the density

σ
−(m−k)
0 exp

−1

2σ2
0

‖θ‖2I(θ′U = 0)

with respect to the volume form of N (U). Given k, σ follows π2 which is supported on [0, B]k+1 for

appropriate B > 0. Under π2, the coordinates of σ may be drawn independently with say, σ−2j following

a Gamma density truncated to [0, B]. If reasonable, assuming σ1 = . . . = σk = σ with σ−2 following a

truncated Gamma density will simplify computations. That said, when m ≥ 2 a Gamma distribution only

satisfies the conditions of Theorem 3.1. To satisfy the conditions of Theorem 3.5 a truncated transformed

Gamma density may be used. That is, for appropriate b > 0, we draw σ−b from a Gamma density truncated

to [B−1,∞). Given k, k ≥ 1, P follows a DP (wkPk) prior. To get conjugacy, we may select Pk to be

a Gaussian distribution on <k with covariance τ2Ik. With such a prior the conditions of Theorem 3.5 are

satisfied if we choose a, b, τ and B such that τ2 > 4B2, a < 2(1+α)m (with α as in A4) and a−1+b−1 < m−1.

This result is available from Corollary 3.6 the proof of which is provided in the Appendix.

Corollary 3.6. Assume that ft satisfies Assumptions A1-A4. Let Πf be a prior on the density space as in

Theorem 3.5. Pick positive constants a, b, {τk}mk=1 and B and set the prior as follows. Choose π1(.|k) such

that for k ≤ m − 1, ‖θ‖a follows a Gamma density. Pick π2(.|k) such that σ, σ1, . . . , σk are independently

and identicaly distributed with σ−b following a Gamma density truncated to [B−1,∞). Alternatively let

σ = σ1 = . . . = σk with σ distributed as above. For the DP (wkPk) prior on P , k ≥ 1, choose Pk to be

a Normal density on <k with covariance τ2kIk. Then almost sure strong posterior consistency results if the

constants satisfy τ2k > 4B2, a < 2(1 + α)m and 1/a+ 1/b < 1/m.

A multivariate gamma prior on σ satisfies the requirements for weak but not strong posterior consistency

(unless m = 1). However that does not prove that it is not eligible because Corollary 3.6 provides only

sufficient conditions. Truncating the support of σ is not undesirable because for more precise fit we are
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interested in low within cluster covariance which will result in sufficient number of clusters. However the

transformation power b increases with m resulting in lower probability near zero which is undesirable when

sample sizes are not high.

In Bhattacharya and Dunson (2011), a gamma prior is proved to to be eligible for a Gaussian mixture

model (that is, k = m) as long as the hyperparameters are allowed to depend on sample size in a suitable

way. However there it is assumed that ft has a compact support. We expect the result to hold true in this

context too.

3.3 Identifiability of Density Model Parameters

In many applications a principal modeling goal is actually estimating the subspace S and its dimension.

In a classification or regression setting, this amounts to learning the principal subfeatures that explain the

variability in the response. Before S can be uniquely estimated, it’s identifiability must be established. That

is, it must be shown that there exists a unique S corresponding to model (3.3). To this end, let Pf denote

the distribution corresponding to f a mixture density as in (3.3). Then it follows that

Pf = Nm(0,Σ) ∗ (P ◦ φ−1), (3.6)

with “∗” denoting convolution. Now let ΦP (t) be the characteristic function associated with P , then (3.6)

implies that the characteristic function of f (or Pf ) is

Φf (t) = exp(−1/2t′Σt)ΦP◦φ−1(t), t ∈ <m. (3.7)

If a discrete P is employed, then (3.7) suggests that Σ and P ◦ φ−1 can be uniquely determined from f .

Recall that φ : <k −→ <m and φ(<k) = S. Further, if Y ∼ P , then P ◦ φ−1 is the distribution of φ(Y ) with

support on the k dimensional affine plane S.

In order to proceed we introduce the affine support of P denoted by asupp(P ) and defined as the

intersection of all affine subspaces of <k having probability 1. This actually turns out to be an affine

subspace containing support(P ) (but may be larger). To identify S and k we assume that asupp(P ) is <k.

In other words, we use a prior for which P is discrete and asupp(P ) = <k w.p. 1. An appropriate choice

of prior for P given k would be the commonly used Dirichlet process with a full support base distribution.

Then, from the nature of φ, asupp(P ◦ φ−1) is an affine subspace of <m of dimension equal to that of

asupp(P ). Since asupp(P ◦φ−1) is identifiable, this implies that k is also identifiable as its dimension. Since
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S contains asupp(P ◦ φ−1) and has dimension equal to that of asupp(P ◦ φ−1), S = asupp(P ◦ φ−1). We

have shown that the (sub) parameters (Σ, k, S, P ◦ φ−1) are identifiable once we set a full support discrete

prior on P given k. Then UU ′ and θ are identifiable as the projection matrix and origin of S. However

P and the coordinate choice φ (hence U) are still non-identifiable. However, if we consider the structure

Σ = UΣ0U
′ + σ2(Im −UU ′) with a diagonal Σ0 and impose some ordering on the diagonal entries of Σ0,

then the columns of U become identifiable up to a change of signs as the eigen-rays.

3.4 Point Estimation for Subspace S

To obtain a Bayes estimate for the subspace S, one may choose an appropriate loss function and minimize the

Bayes risk defined as the expectation of the loss over the posterior distribution. Any subspace is characterized

by its projection matrix and origin. That is, the pair (R,θ) where R ∈ M(m) and θ ∈ <m satisfy R =

R′ = R2 and Rθ = 0. We use Sm to denote the space of all such pairs. One particular loss function on Sm

is

L1((R1,θ1), (R2,θ2)) = ‖R1 −R2‖2 + ‖θ1 − θ2‖2, (Ri,θi) ∈ Sm,

where ‖A‖2 =
∑
ij a

2
ij = Tr(AA′) denotes the norm-squared of some matrix A = (aij). Then a point

estimate for (R,θ) is the (R1,θ1) minimizing the posterior expectation of loss L1 over (R2,θ2), provided

there is a unique minimimizer.

If the goal is to estimate the directions of the subspace (U), we may instead use the loss function

L2((U1, w1), (U2, w2)) = ‖U1 −U2‖2 + (w1 − w2)2, (Ui, wi) ∈ Sm2.

Here the m ×m matrix Ui has the first k columns as the directions of the corresponding subspace Si, the

(k+ 1)st gives the direction of the subspace origin θi and the rest are set to the zero vector while wi = ‖θi‖.

Therefore

Sm2 =

(U , w) ∈M(m)×<+ : U ′U =

 I 0

0 0


 .

Again the idea is to find the minimizer (if unique) (U1, w1) of the expected value of L2 under the posterior

distribution of (U2, w2) and set the estimated subspace dimension k as the rank of U1 minus 1, the principal

directions consisting of the first k columns of U1 and the origin as w1 times the last column. Since the k
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orthonormal directions of the subspace are only identifiable as rays, one may even look at the loss

L3((U ,θ1), (V ,θ2)) =

m∑
j=1

‖UjU ′j − VjV ′j ‖2 + ‖θ1 − θ2‖2,

where

(U ,θ1), (V ,θ2) ∈ Sm3 =

(U ,θ) ∈M(m)×<m : U ′U =

 I 0

0 0

 , U ′θ = 0

 .

Theorems 3.7 and 3.8 (proofs of which can be found in the appendix) derive expressions for minimimizers of

the risk functions corresponding to L1 and L2 and present conditions for their uniqueness. In what follows

we use Pn to denote the posterior distribution of the parameters given the sample which is assumed to have

finite second order moments. For a matrix A, by A(k) we shall denote the submatrix of A consisting of its

first k columns.

Theorem 3.7. Let f1(R,θ) =
∫
(R2,θ2)

L1((R,θ), (R2,θ2))dPn(R2,θ2), (R,θ) ∈ S. This function is min-

imized by R =
∑k
j=1UjU

′
j and θ = (I −R)θ̄ where R̄ =

∫
M(m)

R2dPn(R2) and θ̄ =
∫
<m θ2dPn(θ2) are

the posterior means of R2 and θ2 respectively, 2R̄ − θ̄θ̄′ =
∑m
j=1 λjUjU

′
j, λ1 ≥ . . . ≥ λm is a s.v.d. of

2R̄ − θ̄θ̄′, and k minimizes k −
∑k
j=1 λj on {0, . . . ,m}. The minimizer is unique if and only if there is a

unique k minimizing k −
∑k
j=1 λj and λk > λk+1 for that k.

Theorem 3.8. Let f2(U , w) =
∫
(U2,w2)

L2((U , w), (U2, w2))dPn(U2, w2), (U , w) ∈ Sm2. Let w̄ and Ū de-

note the posterior means of w2 and U2 respectively. Then f2 is minimized by w = w̄ and any U = [U1, 0],

where U1 ∈ Vk+1,m satisfies Ū(k+1) = U1(Ū ′(k+1)Ū(k+1))
1/2, and k minimizes g(k) = k−2Tr(Ū ′(k+1)Ū(k+1))

1/2

over {0, . . . ,m − 1}. The minimizer is unique if and only if there is a unique k minimizing g and Ū(k+1)

has full rank for that k.

3.5 Nonparametric Classification with Feature Coordinate Selection

We know turn our attention to specifying a kernel for Y and ultimately the joint of (Y,X). Because the

association between X and Y may not be causal, it is natural to model X and Y jointly and employ the

conditional that is induced through the joint to model Y |X. Beyond being conceptually pleasing, this

strategy provides a coherent method of dealing with missing observations and is quite flexible in the types

of data that can be accommodated. In classification, Y is categorical and takes on values from {1, . . . , c}.
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Because of this, a multinomial kernel (denoted by Mc(y;ν) =
∏c
`=1 ν

I[y=`]
` ) would be a natural choice for Y .

Using the specified kernels for X and Y consider the following model

(Y,X) ∼ f(y,x) =

∫
<k×Sc

Nm(x;φ(µ),Σ)Mc(y;ν)P (dµ dν), (3.8)

with Sc = {ν ∈ [0, 1]c :
∑
ν` = 1} denoting the c−1 dimensional simplex. Note that (3.8) is a generalization

of (3.3) and (3.4) along the lines of the joint model proposed in Dunson and Bhattacharya (2011), though

they focus on kernels for predictors on models that accommodate non-Euclidean manifolds and there is no

dimensionality reduction.

Since X is high dimensional it is possible (and fairly common) that the estimation of Y |X through

(Y,X) is dominated by the marginal onX. To avoid this we desire to identify a few “important” coordinates

of X and model (Y,X) only through those coordinates. This would induce a conditional that depends on

only a few coordinates of X (thus simultaneously performing dimension reduction and feature coordinate

selection). The remaining coordinates of X can be modeled independently as equal variance Gaussians

(though preliminary studies indicate that the subspace estimation and prediction are robust to a true joint

distribution having ‘non-signal’ predictors that are not predictive of Y ).

to this end consider an isometric transformation on X. (Note that an isometric transformation can be

used with out loss of generality and it provides some benefit regarding coordinate inversion.) That is, one

can locate a k ≤ m and U ∈ Vk,m such that

(Y,U ′X) ∼ f1(y,U ′x) =

∫
<k×Sc

Nk(U ′x;µ,Σ0)Mc(y;ν)P (dµ dν), U ′x ∈ <k. (3.9)

Additionally for some θ ∈ <m and V ∈ Vm−k,m satisfying V ′U = 0 and θ′U = 0, the orthogonal residual

is modeled as

V ′X ∼ Nm−k(V ′θ, σ2Im−k) (3.10)

independently of (Y,U ′X). With such a structure, the joint distribution of (Y,X) becomes (3.8) where

φ : <k → <m, φ(x) = Ux+ θ, U ∈ Vk,m, θ ∈ <m, U ′θ = 0,

Σ = U(Σ0 − σ2Ik)U ′ + σ2Im, Σ0 ∈M+(k), σ2 ∈ <+.
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The conditional density Y = y|X = x can be expressed as

p(y|x; Θ) =

∫
<k×Sc Nk(U ′x;µ,Σ0)Mc(y;ν)P (dµ dν)∫

<k×Sc Nk(U ′x;µ,Σ0)P (dµ dν)
(3.11)

with parameters Θ = (k,U ,Σ0, P,θ, σ
2). A draw from the posterior of Θ given model (3.8) will provide a

draw from (3.11).

When P is discrete (which is a standard choice), Y |X,Θ can be thought of as a weighted c dimensional

multinomial probability vector with the weights depending on X only through the selected k-dimensional

coordinates U ′X. For example, if P =
∑∞
j=1 wjδ(µj ,νj), then

p(y|x; Θ) =

∞∑
j=1

w̃j(U
′x)Mc(y;νj) (3.12)

where w̃j(U ′x) =
wjNk(U

′x;µj ,Σ0)∑∞
i=1 wiNk(U

′x;µi,Σ0)
and U ′x ∈ <k for j = 1, . . . ,∞. We refer to (3.12) as the principal

subspace classifier (PSC).

The above is easily adapted to a regression setting by considering a low dimensional response Y ∈ <l and

replacing the multinomial kernel used for Y with a Gaussian kernel. In this setting the joint model becomes

(Y ,X) ∼
∫
<k×<l

Nm(x;φ(µ),Σx)Nl(y;ψ,Σy)P (dµ dψ), (3.13)

which produces the following conditional model

p(y|x; Θ) =

∫
<k×<l Nk(U ′x;µ,Σ0)Nl(y;ψ,Σy)P (dµ dψ)∫

<k×<l Nk(U ′x;µ,Σ0)P (dµ dψ)
. (3.14)

For a discrete P this conditional distribution becomes

p(y|x; Θ) =

∞∑
j=1

w̃j(U
′x)Nl(y;ψj ,Σy). (3.15)

which is a mixture whose weights depend on X only through its k-dimensional coordinates U ′X. As the

regression model is a straightforward modification of the classifier, we focus on the classification case for sake

of brevity.
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4 Posterior Computation

Since sampling independently from the distribution of Θ = (k,U ,θ,Σ0, σ, P ) conditioned on the iid re-

alizations (Y1,X1), . . . , (Yn,Xn) is not feasible, we resort to obtaining MCMC draws. As will be seen the

computation required for fitting the model is fairly straight forward as a Gibbs sampler is all that is required.

As a prior for P , we use a Dirichlet process (DP) (i.e., P ∼ DP (w0P0)) with P0 = Nk(mµ,Sµ) and

w0 = 1. We employ the Sethuraman (1994)’s stick breaking representation of the Dirichlet process so that

P =
∑∞
j=1 wjδµj where µj is drawn iid from P0 and wj = vj

∏
`<j(1 − v`) with vj ∼ Beta(1, w0). After

introducing cluster labels S1, . . . , Sn, the likelihood becomes

f(x;U ,θ,Σ0, σ,µ,S,w, ν) =

n∏
i=1

wSiNm(xi;UµSi + θ,Σ)Mc(yi;νSi)

Assuming a priori independence between the elements of Θ we select commonly used conjugacy preserving

prior distributions for parameters Σ0 and σ along with latent variables µ, S, w and ν . A von Mises-Fisher

prior distribution is used for (U |θ) while a truncated normal is used for θ. For sake of brevity, we only

highlight the particularly novel parts of the MCMC algorithm (updating U and θ). Details regarding full

conditionals of the of the remaining parameters and latent variables are provided in the Appendix.

Updating U :

Let π(U) ∝ etr{A′U} denote a von Mises-Fisher prior distribution for U ∈ Vk,m. It can be shown that the

full conditional of U is

[U |−] ∝ exp{tr
[
1/2(σ−2Ik −Σ−10 )U ′(

n∑
i=1

xix
′
i)U + Σ−10 (

n∑
i=1

µSix
′
i)U

]
}π(U)I[U ′θ = 0]

∝ etr{F ′1U + F2U
′F3U}etr{A′U}I[U ′θ = 0],

∝ etr{(F1 +A)′U + F2U
′F3U}I[U ′θ = 0] (4.1)

where F1 = (
∑n
i=1 xiµ

′
Si

)Σ−10 , F2 = 1
2 (σ−2Ik −Σ−10 ), and F3 =

∑n
i=1(xix

′
i). Thus the full conditional of

U is a Bingham-von Mises-Fisher distribution constrained to lie in N (θ′). Strategies for sampling from an

unconstrained Bingham-von Mises-Fisher are developed in Hoff (2009) and can be extended for use here.

Using a change of variable technique, it can be shown that for any orthonormal basis N of N (θ′) the
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distribution of Ũ = N ′U is

[Ũ |−] ∝ etr{[N ′(F1 +A)]′Ũ +CŨ ′N ′BNŨ}I[Ũ ′Ũ = Ik], (4.2)

which is an unconstrained Bingham-von Mises-Fisher distribution. Therefore, a draw from the full conditional

of U is obtained by carrying out the following steps

1. Obtain N an othonormal basis of N (θ′).

2. Using ideas from Hoff (2009) to sample Ũ from (4.2).

3. Set U = NŨ .

Updating θ:

A conjugate prior for θ conditioned on U is N(mθ,Sθ)I[θ ∈ N (U ′)]. The full conditional of θ with

this prior is [θ|−] ∼ N(m∗θ,S
∗
θ )I[θ ∈ N (U ′)] where S∗θ = (nΣ−1 + S−1θ )−1 and m∗θ = S∗θ (nΣ−1x̄ +

S−1θ mθ). One can sample from this truncated normal distribution by employing the same change of variable

technique used to sample from [U |−]. Specifically, let M denote an orthonormal basis of N (U ′). Then

[θ̃ = M ′θ|−] (the coordinates associated with the projectionMM ′θ) follows an unconstrained multivariate

normal distribution. Therefore the following steps can be followed to sample from θ

1. Obtain M an orthonormal basis for N (U ′)

2. Sample θ̃ from a m − k dimensional Normal distribution with mean (M ′S∗−1θ M)−1M ′S∗−1θ m∗θ and

covariance (M ′S∗−1θ M)−1.

3. Set θ = Mθ̃

Though the algorithm converges quite quickly due to the orthogonality of the projection coordinates,

reasonable starting values can decrease the number of MCMC iterates discarded as burn-in and therefore

may be desirable. For U , the first k eigen-vectors of the sample covariance matrix can be used. For θ one

may use (Im − UsU ′s)x̄ where Us denotes the starting value for U . The initial labels (Si) and coordinate

cluster means (µj) can be obtained by applying a k-means algorithm to U ′sxi.

5 Simulations and Examples

We provide a few simulated and real data examples to demonstrate density estimation, classification, subspace

estimation and highlight parameter interpretations available from the PSD and PSC.
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5.1 Density Estimation and Prediction Simulation Study

To assess density estimation and prediction performance we employ two data generating mechanisms. First

we generate m-dimensionalX vectors using a finite mixtureX ∼
∑c+1
h=1 πhNm(ηh, σ

2I), where ηh is a vector

of zeros save for the hth entry which is 1 and σ2 is the bandwidth. Y is generated using (3.12) along with an

orthogonal basis of the matrix that projectsX onto the c-dimensional plane. This method of generating data

will be referred to as the mixture data generator (MDG). Secondly we use a factor model X ∼ Nm(0,Ω)

where Ω = ΛΛ′+ Σ. Σ is a diagonal matrix whose inverse diagonal values are generated with Gam(1, 0.25)

(a Gamma distribution with mean 4) and the entries of Λ are chosen as described in Bhattacharya and

Dunson (2010) making Ω sparse. Y is created by first generating a (m + 1)-dimensional X vector and

setting Y = I[X[1] > 0] (X[1] denotes the first element of X). We refer to this data generating scenario

as factor model data generator (FDG). In addition to multiple data generating schemes we also change the

feature space dimension (m = 50, 100) and subspace dimension (k = 2, 5) but fix the sample size at n = 100

and bandwidth at σ2 = 0.1 (for MDG). For each factor level combination 25 data set replicates were created.

The PSD and PSC models were fit to these replicate data sets using 1,000 MCMC iterates after discarding

the first 10,000 as burn-in and thinning by 50.

Table 1: Results of the Kullback-Leibler type distance comparing estimated densities from each of the
procedures considered in the simulation study to the density used to generate data.

Data generating k used in PSD PSD
mechanism generating data m k = 2 k = 5 Fin Mix Inf Mix

Finite Mixture
2 50 151.51 153.72 367.51 287.37

100 287.56 289.51 477.47 541.43

5 50 294.03 298.39 484.70 567.70
100 525.16 531.21 690.92 712.64

Factor Model
2 50 204.71 220.68 288.91 317.56

100 247.57 255.96 285.38 286.17

5 50 5312.87 5296.59 5479.63 5324.01
100 9498.37 9466.23 10075.46 9725.70

As competitors to PSD we consider a finite mixture f(x) =
∑c
h=1 πhNm(x;µh, σ

2Im) and an infinite

mixture f(x) =
∑∞
h=1 πhNm(x;µh, σ

2Im). These were chosen because of their flexibility and accuracy in

estimating densities. To compare the density estimates from the mixtures to those produced by the PSD
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the following Kullback-Leibler type distance is used

1

D

D∑
d=1

1

T

T∑
t=1

(
100∑
`=1

log f0(x∗`d)−
100∑
`=1

log f̂t(x
∗
`d)

)
. (5.1)

Here f0 denotes the true density function, d is an index for the D = 25 replicate data sets, x∗`d is the `th

out of sample observation generated from the dth data set and f̂t is the estimated density. Values for (5.1)

can be found in Table 1 for the various data generating scenarios. The values in columns “PSD k = 2” and

“PSD k = 5” are the results of (5.1) using the PSD model with k fixed at 2 and 5 respectively. Results from

the finite mixture and infinite mixture are under the columns “Fin Mix" and “Inf Mix".

It appears that PSD does a better job of estimating the true density relative to the mixtures. This is true

regardless of the data generating mechanism and the true subspace dimension. This is somewhat expected

for PSD models that “over-fit” the data in the sense that the subspace dimension used in the model is larger

than the true subspace dimension. However, this was quite unexpected in the case of “under-fitting” (value

of k used in the model is smaller than true subspace dimension).

To compare the classification performance of PSC we consider k nearest neighbor (KNN), mixture dis-

criminant analysis (MDA), and support vector machine (SVM). KNN and SVM are very accurate algorithmic

based classifiers while MDA is a well known model based classifier. The R R Development Core Team (2010)

functions knn Venables and Ripley (2002), mda Hastie and Tibshirani (2009), and svm Dimitriadou et al.

(2011) were employed to implement KNN, MDA, and SVM. For KNN the neighborhood size corresponding

to the best out of sample prediction was used. Similarly, for MDA the number of components that produced

the best out of sample prediction was used. The four methodologies were compared using out of sample

prediction error rates. To investigate the influence that “over-fitting” and “under-fitting” might have on PSC

predictions, the PSC model was fit using k = 2, 5, 10. Results can be found in Table 2. Values under the

columns “PSC k = ·” correspond to the out of sample error prediction rate under the PSC model with fixed

k = ·. The values under KNN, MDA, and SVM represent the out of sample prediction error rates for the

respective procedures.

It seems fairly evident from the simulation study that the PSC is an able classifier. When generating

data using the mixture the PSC attains the lowest out of sample prediction error regardless of wether the

true subspace dimension is used in fitting the model or not. However, as the subspace dimension increased

it appears that the consequences of under-fitting are more precarious than over-fitting (a similar phenomena

in most models developed for prediction).
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Table 2: Results of the out of sample prediction error rates.

Data generating k used in PSC PSC PSC
mechanism generating data m k = 2 k = 5 k = 10 KNN MDA SVM

Finite Mixture
2 50 0.028 0.029 0.029 0.166 0.060 0.066

100 0.032 0.032 0.033 0.250 0.147 0.128

5 50 0.151 0.060 0.058 0.238 0.123 0.198
100 0.189 0.073 0.068 0.323 0.220 0.289

Factor Model
2 50 0.210 0.210 0.210 0.240 0.300 0.220

100 0.190 0.180 0.180 0.220 0.470 0.220

5 50 0.210 0.160 0.190 0.330 0.220 0.170
100 0.237 0.198 0.201 0.372 0.286 0.199

5.2 Illustrations Using Real Datasets

As an empirical example, consider the so called Brain Computer Interface (BCI) data set from the third

BCI competition. This data set consists of a single person performing 400 trials. In each one movements

with the left hand or the right hand were imagined and the EEG was recorded from 39 electrodes. An

autoregressive model of order 3 was Þt to each of the resulting 39 time series. A trial is then represented by

the total of 117 = 39 × 3 dimensional feature space. The goal is to classify each trial as left or right hand

movements using the 117 features. After standardizing the data, we randomly selected 200 observations to

serve as testing data. To select a dimension k we considered out of sample prediction error and area under

the ROC curve. Since low out of sample prediction error and large area under the curve are desirable the

k ∈ 1, . . . , 25 that maximized their difference was used (which turned out to be k = 3). The resulting out of

sample prediction error rate for PSC was 0.205 compared to 0.51 for KNN, 0.25 for MDA and 0.23 for SVM.

Therefore, in this empirical example, PSC is an adequate classifier in a moderately large feature space.

Though we have shown that the method provides comparable prediction (relative to commonly used

alternatives), the PSC model has the advantage of providing interpretable parameters. To investigate this

further, consider the Wisconsin Breast Cancer data set which is available in the mlbench (Leisch and Dimi-

triadou 2010) R package. In this data set the response is breast cancer diagnosis while the covariates are nine

nominal variables describing some type of breast tissue cell characteristic. The values of the nine covariates

were determined by medical experts. To fit the PSC model, k = 3 was used (which was arrived at using

the same procedure described for the BCI data set). With this k, the PSC produced an out of sample error

rate of 0.017 which is smaller than the error rate for KNN (0.035), MDA (0.028) and SVM (0.028). More

importantly, particular interest in this study centered on determining the influence that each tumor attribute
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had on classification. The nine attributes (clump thickness, uniformity of cell size, uniformity of cell shape,

marginal adhesion, single epithelial cell size, bare nuclei, bland chromatin, normal nucleoli, and mitosis) are

all related to a lump being benign or not. Using results from Theorem 3.7 the estimated principal directions

are found in Table 3. (Recall these directions are unique only up to a sign under certain criteria outlined in

Section 4.5.)

Table 3: The k = 3 principal directions of the Breast Cancer data set along with the row norms

Variable U[,1] U[,2] U[,3] norm

clump thickness -0.294 0.233 0.453 0.588
uniformity of cell size -0.399 -0.132 -0.189 0.460
uniformity of cell shape -0.395 -0.102 0.0172 0.408
marginal adhesion -0.314 -0.007 -0.477 0.571
single epithelial cell size -0.231 -0.181 -0.307 0.424
bare nuclei -0.450 0.713 0.101 0.849
bland chromatin -0.295 -0.032 -0.194 0.354
normal nucleoli -0.376 -0.587 0.543 0.883
mitosis -0.121 -0.173 -0.305 0.371

The principal directions can be interpreted similarly to how principal components are interpreted (see the

end of Section 3.1). From this perspective, the first principal direction is a function of all nine covariates and

their weights are all similar. The next principal direction excludes marginal adhesion and bland chromatin

while grouping clump thickness and bare nuclei with more weight placed on the later. Another method that

can be used to assess the relative importance of each variable and also provide a means of grouping the

variables is to calculate the norm associated with each row of U (this criteria is invariant to choice of U).

These values can be found under the “norm" column of Table 3. It appears that bare nuclei and normal

nucleoli form a group, clump thickness and marginal adhesion form another, and uniformity of cell size,

uniformity of cell shape and single epithelial cell size form a third.

5.3 Collaborative Perinatal Project Application

We now revisit the Collaborative Perinatal Project (CPP) sub-study that was briefly described in the in-

troduction. A principal aim of the study was to investigate the influence that exposure to certain chemicals

might have on preterm and small-for-gestational-age babies at birth. To investigate possible associations,

samples from 2380 subjects in the CPP were taken and assayed for various compounds (e.g., the insecticides

DDT and Dieldrin, metabolite DDE, and albumin). Other subject specific characteristics were also recorded
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(e.g., race, length of gestation). In addition to identifying exposures that are important in explaining the

responses of interest, there is substantial interest in being able to characterize the joint effect of a combina-

tion or mixture of the exposures. These could be used to create an index of an individual’s exposure burden

which could be used to determine a mothers risk to adverse gestational outcomes. The PSC seems partic-

ularly well suited to carry out the study objectives. For sake of simplicity we only considered 40 variables

that were identified to be of particular interest. Among them are lipid adjusted exposure measurements to

the metabolite DDE, the insecticides DDT, Dieldrin, Mirex, and Oxychlorodane and many measurements

related to poychlorinated biphenyls (PCBs). Also, variables such as race, age, and length of gestation were

included. The response was an indicator of pre-term birth.

We randomly partitioned the data set into training (2000 individuals) and testing (380 individuals) data

sets. Because the adverse response (preterm birth) is rare, it is not useful to use out of sample prediction error

rate as a model assessment tool or a criterion to choose a dimension (regular-term birth was always predicted

which is the case for SVM as well). Therefore, only out of sample area under the ROC curve was used to

select k which resulted in k = 3. To approximate the posterior distribution of Θ given observations, 1000

MCMC iterates were collected after discarding the first 100,000 as burn-in and thinning by 100. Convergence

was assessed graphically using two independently run MCMC chains. Once the 1000 MCMC iterates were

collected U was estimated using the ideas in Section 3.4. Upon looking at these principal directions a little

closer a few interesting groups of predictors appeared. Table 4 provides results in tabular form and Figure

2 provides a graphical representation.

The first principal direction contains 20 relevant predictors with all the 9 lipid unadjusted PCB metabo-

lites being grouped together. (e.g., they had similar magnitudes.) The second principal direction identified

race as the variable with the largest magnitude and DDE (both lipid adjusted and not) as a group. The

third principal direction contains 15 predictors with the sum of the total lipid-adjustd PCB’s having the

largest magnitude. Other predictors that were fairly clearly grouped were lipid adjusted PCB 138 and 175,

and total cholesterol. Considering the row norms, PCB 153 and 138 adjusted for lipid amounts are clearly

most relevant while Mirex both adjusted for lipids and not are clearly the least.

6 Conclusions

This article has proposed a novel methodology for nonparametric Bayesian learning of an affine subspace

underlying potentially high-dimensional data. Clearly, there is a need for flexible methods for dimension-
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Figure 2: Heat map of the 3 principal directions of the Perinatal data set along with the row norms
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Table 4: The 3 principal directions of the Collaborative Perinatal Project sub-study along with the row
norms

Variable U[,1] U[,2] U[,3] norm

NA_PPM 0.081 -0.083 -0.093 0.149
TOT_CHOL 0.053 -0.211 -0.332 0.397
TRIGLYC 0.040 -0.184 -0.241 0.306
DIEL_A 0.092 0.044 -0.119 0.157
DIEL_LA -0.025 -0.068 -0.072 0.103
MIRE_A 0.021 0.087 -0.009 0.090
MIRE_LA 0.036 0.063 -0.016 0.074
OXYC_A 0.181 0.210 -0.215 0.351
OXYC_LA 0.075 0.123 -0.166 0.219
PCB028_A 0.125 -0.199 -0.138 0.272
PCB028_LA 0.077 -0.096 -0.038 0.129
PCB052_A 0.089 -0.190 0.067 0.220
PCB052_LA 0.072 -0.146 -0.018 0.164
PCB074_A 0.228 -0.258 -0.024 0.345
PCB074_LA 0.167 -0.067 -0.026 0.182
PCB105_A 0.238 -0.246 0.090 0.354
PCB105_LA 0.120 -0.145 0.046 0.193
PCB118_A 0.239 -0.258 0.099 0.366
PCB118_LA -0.096 -0.023 -0.230 0.250
PCB138_A 0.295 -0.077 0.069 0.313
PCB138_LA -0.168 -0.059 -0.455 0.489
PCB153_A 0.306 -0.053 0.066 0.318
PCB153_LA -0.161 -0.083 -0.423 0.460
PCB170_A 0.271 0.050 -0.091 0.291
PCB170_LA 0.143 -0.003 -0.064 0.156
PCB180_A 0.285 0.047 -0.058 0.295
PCB180_LA 0.206 0.088 0.045 0.228
PCB194_A 0.217 0.116 -0.137 0.282
PCB194_LA 0.096 -0.032 -0.171 0.199
PCB203_A 0.236 0.121 -0.127 0.294
PCB203_LA 0.119 0.022 -0.172 0.211
DDE_A 0.139 0.230 -0.094 0.285
DDE_LA 0.114 0.299 0.047 0.323
DDT_A -0.049 -0.199 0.034 0.207
DDT_LA -0.011 -0.212 0.021 0.213
NONA_A 0.159 0.261 -0.210 0.371
NONA_LA 0.026 0.084 -0.095 0.129
TOT_LPCB 0.199 0.040 0.234 0.310
V_MAGE 0.059 -0.082 -0.034 0.106
RACEC1 0.070 0.375 0.038 0.383
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ality reduction that avoid parametric assumptions. In this context, the Bayesian paradigm has substantial

advantages over commonly used machine learning, computer science and frequentist statistical methods that

obtain a point estimate of the subspace or manifold which the data are concentrated near. As there is

unavoidably substantial uncertainty in subspace or manifold learning, it is important to fully account for

this uncertainty to avoid misleading inferences and obtain appropriate measures of uncertainty in estimating

densities, performing predictions and identifying important predictors. We accomplish this in a Bayesian

manner by placing a probability model over the space of affine subspaces, while developing a simple and

efficient computational algorithm relying on Gibbs sampling to estimate the subspace. The model is theo-

retically proved to be highly flexible and posterior consistency is achieved under appropriate prior choices.

The proposed model and computational algorithm should be broadly useful beyond the density estimation

and classification settings we have considered. In addition to building efficient classifiers, the methodology

provides insight regarding predictors (or mixtures of them) that are influential in explaining the variability

in the response, information that applied scientists often consider valuable.
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Appendices

A Proofs

As a reminder in what follows Br,m refers to the set {x ∈ <m : ‖x‖ ≤ r}. For a subset D of densities and

ε > 0, the L1-metric entropy N(ε,D) is defined as the logarithm of the minimum number of ε-sized (or

smaller) L1 subsets needed to cover D.

A.1 Proof of Lemma (3.3)

Proof. Any density f in Dnε can be expressed as
∫
<m Nm(ν,Σ)Q(dν) with Σ = UΣ0U

′ + σ2(Im −UU ′),

Q = P ◦ φ−1, φ(x) = Ux, and (k,U ,θ,Σ, σ, P ) ∈ Hnε. The assumption on π2 and Hnε will imply that Σ

has all its eigenvalues in [h2n, A
2].

28



We also claim that Q(Bc√
2rn,m

) < ε. To see this, note that ‖φ(µ)‖2 = ‖µ‖2 + ‖θ‖2 ≤ 2r2n when-

ever ‖µ‖ ≤ rn and ‖θ‖ ≤ rn. Hence Brn,k ⊆ φ−1(B√2rn,m
) if ‖θ‖ ≤ rn. Therefore ε > P (Bcrn,k) ≥

P
(
(φ−1(B√2rn,m

))c
)

= P ◦ φ−1
(
Bc√

2rn,m

)
for all (P,θ) ∈ Hnε. Hence the claim follows. Therefore

Dnε ⊆ D̃nε = {f =

∫
Nm(ν,Σ)Q(dν) : Q(Bc√

2rn,m
) < ε, λ(Σ) ∈ [h2n, A

2]},

λ(Σ) denoting the eigenvalues of Σ. From Lemma 1 of Wu and Ghosal (2010), it follows that N(ε, D̃nε) ≤

C(rn/hn)m and this completes the proof.

A.2 Proof of Lemma (3.4)

The proof is similar in scope to the proof of Lemma 2 in Wu and Ghosal (2010). Throughout the proof, C

will denote constant independent of n.

Proof. Given k,U ,θ,σ and µn = (µ1, . . . ,µn) iid P with Xi ∼ Nm
(
φ(µi),Σ

)
, i = 1, . . . , n, mutually

independent and independent of P . Hence

Pr
(
P (Bcrn,k) ≥ ε

∣∣k,Xn

)
= E

(
Pr
(
P (Bcrn,k) ≥ ε

∣∣k,µn)∣∣k,Xn

)
.

From Ferguson (1973), given µn and k, for A ⊆ <k, P (A) ∼ Beta
(
wkPk(A)+N(A), wk(1−Pk)+n−N(A)

)
where N(A) =

∑n
i=1 I{µi∈A}. Hence using the Markov inequality,

Pr
(
P (Bcrn,k) ≥ ε

∣∣k,µn) ≤ wkPk(Bcrn,k) +N(Bcrn,k)

ε(n+ wk)
.

Therefore

E
(
Pr
(
P (Bcrn,k) ≥ ε

∣∣k,Xn

)
≤
wkPk(Bcrn,k)

ε(n+ wk)
+

1

ε(n+ wk)

n∑
i=1

Pr
(
µi ∈ Bcrn,k

∣∣k,Xn

)
.

Denote the above two terms as T1 and T2. Then EftT1 = T1 −→ 0 as rn → ∞. Under the marginal prior

given k, µn has an exchangable distribution πn(µn|k) on (<k)n (see Ferguson (1973)). Also since Xn are iid

given ft, it follows that

Eft(T2) =
n

ε(n+ wk)
Eft
{
Pr
(
µ1 ∈ Bcrn,k

∣∣k,Xn

)}
.
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Now

Pr
(
µ1 ∈ Bcrn,k

∣∣k,Xn

)
≤ Pr

(
µ1 ∈ Bcrn,k,min(σ) > hn

∣∣k,Xn

)
+

Pr(min(σ) ≤ hn
∣∣k,Xn).

The last term above converges to 0 a.s. by the assumption on π2. Hence to complete the proof, it remains

to show that

Eft
{
Pr
(
µ1 ∈ Bcrn,k,min(σ) > hn

∣∣k,Xn

)}
−→ 0 as n→∞.

To compute the probability in above, we denote by π1n(µ1|µ−1, k) the conditional distribution of µ1 given

µ−1 = (µ2, . . . ,µn) , and by π−1n(µ−1|k) the marginal distribution of µ−1 under the joint πn. Then

Pr
(
µ1 ∈ Bcrn,k,min(σ) > hn

∣∣k,Xn

)
= A(Xn)/B(Xn)

where A(Xn) =

∫
min(σ)>hn,‖µ1‖>rn

n∏
i=1

Nm(Xi;φ(µ),Σ)dπ1n(µ1|µ−1, k)dπ−1n(µ−1|k)dπ1(U ,θ|k)dπ2(σ|k)

and B(Xn) =

∫ n∏
i=1

Nm(Xi;φ(µ),Σ)dπ1n(µ1|µ−1, k)dπ−1n(µ−1|k)dπ1(U ,θ|k)dπ2(σ|k).

We use Eft{A(Xn)/B(Xn)} ≤

sup
X1∈Brn/2,m

A(Xn)

B(Xn)

∫
Brn/2,m

ft(x)dx+

∫
Bc
rn/2,m

ft(x)dx. (A.1)

and upper bound the terms in above.

First we upper bound A(Xn) when ‖X1‖ ≤ rn/2. We express Nm(X1;φ(µ1),Σ) as

Nk(U ′X1;µ1,Σ0)
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and note that ‖X1‖ ≤ rn/2, ‖µ1‖ > rn and hn < σj ≤ A ∀j ≤ k implies

Nk(U ′X1;µ1,Σ0) ≤ Ch−kn exp
−r2n
8A2

.

Therefore A(Xn) ≤

Ch−kn exp
−r2n
8A2

∫
(σ−2)

m−k
2 exp

−1

2σ2
(X1 − θ)′(Im −UU ′)(X1 − θ)

n∏
i=2

Nm(Xi;φ(µi),Σ)dπ−1n(µ−1|k)dπ1(U ,θ|k)dπ2(σ|k).

(A.2)

Next we lower bound B(Xn) when X1 ∈ Brn/2,m. The conditional distribution π1n can be expressed as

1
wk+n−1

∑n
i=2 δµi + wk

wk+n−1Pk (see Ferguson (1973)). Hence B(Xn) ≥

wk
wk + n− 1

∫ n∏
i=1

Nm(Xi;φ(µi),Σ)pk(µ1)dµ1dπ−1n(µ−1|k)dπ1(U ,θ|k)dπ2(σ|k).

Now ∫
Nk(U ′X1;µ1,Σ0)pk(µ1)dµ1 ≥

∫
S

Nk(U ′X1;µ1,Σ0)pk(µ1)dµ1

where

S = {µ1 :

k∑
l=1

σ2
l (U ′kX1 − µ1)2l ≤ 1}.

For µ1 ∈ S, Nk
(
U ′X1;µ1,Σ0) ≥

∏k
1 σ
−1
j e−1/2 and pk(µ1) ≥ δkn with δkn defined in the Lemma. Therefore

∫
S

Nk(U ′X1;µ1,Σ0)pk(µ1)dµ1 ≥ Cδkn
k∏
1

σ−1j

∫
S

dµ1 = Cδkn

and hence when ‖X1‖ ≤ rn/2, B(Xn) ≥

Cn−1δkn

∫
(σ−2)

m−k
2 exp

−1

2σ2
(X1 − θ)′(Im −UU ′)(X1 − θ)

n∏
i=2

Nm(Xi;φ(µi),Σ)

dπ−1n(µ−1|k)dπ1(U ,θ|k)dπ2(σ|k).

(A.3)

Combining (A.2) and (A.3), we get

sup
‖X1‖≤rn/2

A(Xn)

B(Xn)
≤ Cnδ−1kn h

−k
n exp(−r2n/8A2).
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Plug this in (A.1) to conclude Eft{A(Xn)/B(Xn)} ≤

Cnδ−1kn h
−k
n exp(−r2n/8A2) + Prft(‖X‖ > rn/2) (A.4)

which converges to zero by assumption.

Under assumption B1’ and
∑
r
−2(1+α)m
n < ∞ the sequence in (A.4) has a finite sum which results in

the stronger conclusion. This completes the proof.

A.3 Proof of Corollary (3.6)

Proof. By Theorem 3.5, to show a.s. strong posterior consistency, we need to get positive sequences rn and

hn which satisfy

n−1(rn/hn)m −→ 0,
∑

r−2(1+α)mn <∞, and (A.5)
∞∑
n=1

nδ−1kn h
−k
n exp(−r2n/8A2) <∞, (A.6)

and the prior probabilities Pr(‖θ‖ > rn|k) and Pr(min(σ) < hn|k) decay exponentially. Set rn = n1/a

and hn = n−1/b. Then (A.5) is clearly satisfied. By the choice of pk, k ≥ 1, it is easy to check that

δkn ≥ C exp
−r2n
2τ2
k

with C denoting positive constants independent of n all throughout. Then (A.6) is clearly

satisfied because of the assumption τ2k > 4A2. Also because ‖θ‖a follows a Gamma distribution given k,

k ≤ m−1, the probability Pr(‖θ‖ > rn|k) can be upper bounded by C exp(−λran) for some λ > 0. This decays

exponentially with rn = n1/a. Lastly, it remains to check that Pr(min(σ) < hn|k), decays exponentially.

When the coordinates of σ are all equal, the probability can be upper bounded by C exp(−λh−bn ) for some

λ > 0. This decays exponentially with hn = n−1/b. In case the coordinates are iid, the probability can be

upper bounded by Cn exp(−λh−bn ) which also decays exponentially by the choice of hn.

A.4 Proof of Theorem (3.7)

Proof. Simplify f1 as

f1(R,θ) = f1(R̄, θ̄) + ‖R− R̄‖2 + ‖θ − θ̄‖2

= f1(R̄, θ̄) + ‖R− R̄‖2 + ‖Rθ̄‖2 + ‖(I −R)(θ − θ̄)‖2

≥ f1(R̄, θ̄) + ‖R− R̄‖2 + ‖Rθ̄‖2. (A.7)
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Equality holds in (A.7) iff θ = (I −R)θ̄. Then

f1(R,θ) = k − Tr{(2R̄− θ̄θ̄′)R}+ C

where k =Rank(R) and C denotes something not depending on R,θ. From the proof of Proposition 11.1

Bhattacharya and Bhattacharya (2011, In Press), given k one can show that the value of R minimizing f1

above is
∑k
j=1UjU

′
j and the minimizer is unique iff λk > λk+1. Then

f1(R,θ) = k −
k∑
j=1

λj + C.

Now one needs to find the k minimizing the above risk which is as mentioned. This completes the proof.

A.5 Proof of Theorem (3.8)

Proof. The minimizer w = w̄ is obvious. Then

f2(U , w̄) = ‖U − Ū‖2 + C = k1 − 2TrŪ ′(k1)U(k1) + C,

k1 being the rank of U and C symbolizing any constant not depending on U . For k1 fixed, it is proved in

Theorem 10.2 Bhattacharya and Bhattacharya (2011, In Press) that the minimizer U is as in the theorem.

It is unique iff Ū ′(k1)Ū(k1) is invertible. Plug that U and the risk function becomes, as a function of k1,

f3(k1) = k1 − 2Tr(Ū ′(k1)Ū(k1))
1/2.

We find the value of k1 between 1 and m minimizing f3 and set k = k1 − 1.

B Full Conditionals and MCMC algorithm details

We provide the remainder of the full conditionals. After updating U and θ as described in Section 5, a

complete Gibbs sampler can be constructed by cycling through the following 6 steps on an individual basis.

Step 1: Update Si for i = 1, 2, . . . , n by sampling from the following conditional posterior distribution

Pr(Si = j|−) ∝ wj exp
{
−1/2(µ′jΣ

−1
0 µj − 2µ′jΣ

−1
0 U ′xi)

} c∏
`=1

ν
I[yi=`]
j`
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for j = 1, . . . ,∞. To make the total number of states finite the block Gibbs sampler of Ishwaran and James

(2001) may be implemented. Alternatively, the slice sampling ideas described in Yau et al. (2011), Walker

(2007), or Kalli et al. (2011) could be used. The remainder of the algorithm is described from the perspective

of using a block Gibbs sampler which requires truncating the number of atoms to N .

Step 2: Update the DP atom weights by setting wj = vj
∏j−1
l=1 (1− vl), j = 1, . . . , N after drawing

[vl|−] ∼ Beta(1 + nj , w0 +
∑
i

I(Si > j))

with nj =
∑
i I(Si = j) and setting vN = 1.

Step 3: Update the DP atoms {(µj ,νj) : j = 1, . . . , N} independently by sampling from

[µj |−] ∼ Nk(m∗µ,S
∗
µ),

where S∗µ = (njΣ
−1
0 +S−1µ )−1 andm∗µ = S∗µ(U ′Σ−10

∑
i:Si=j

xi +S−1µ mµ). Update the νj ’s by sampling from

[νj |−] ∼ Dir(a∗1, . . . , a∗c),

where a∗` =
∑n
i=1 I[yi = `, Si = j] + a` for ` = 1, . . . , c.

Step 4: Using a σ−2 ∼ Ga(a, b) prior, σ−2 can be updated using

[σ−2|−] ∼ Ga(
1

2
n(m− k) + a, b+

1

2

n∑
i=1

x′ixi +
n

2
θ′θ − 1

2

n∑
i=1

x′iUU
′xi − θ′

n∑
i=1

xi)

Under the simplifying assumption that Σ0 = σ2Ik the full conditional of σ−2 becomes

[σ−2|−] ∼ Ga(
1

2
nm+ a, b+

1

2

n∑
i=1

(xi −UµSi − θ)′(xi −UµSi − θ))

Step 5: Using a truncated Gamma distribution for σ−2j (i.e., σ−2j ∼ Gam(a, b)I[σ−2j ∈ [0, A]]) allows one to

update σ−2j using the following truncated Gamma distribution.

[σ−2j |−] ∼ GAM(
n

2
+ a, b+

1

2

n∑
i=1

(U ′xi − µSi)2j )I[σ−2j ∈ [0, A]].
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