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Abstract

In experiments where observations on each experimental unit are functional in nature, it is often the

case that, in addition to variability along the horizontal axis (height or amplitude variability), there are

also lateral displacements/deformations in curves (referred to as phase variability). Unlike the former,

the latter form of variability is often treated as a nuisance parameter when making inferences. There-

fore, it is common in functional data analysis to reduce this variability by aligning curves through a

process called curve registration. Often, expert knowledge regarding the location and time that certain

curve features occur is available to guide the curve realignment. We propose a Bayesian model that per-

mits incorporating this knowledge when registering curves using a Gaussian process prior formulation.

This novel approach capitalizes on the interpolation property of predictive distributions from Gaussian

processes while still preserving the flexibility found in modern registration techniques. We detail com-

putational strategies and illustrate the utility of the method through a simulation study and an analysis

of knee-power biomechanics. Supplementary materials for the article are available online.

1 Introduction

Biomechanics studies require subjects to negotiate movement tasks that highlight biomechanical systems

of interest and suggest effective treatment strategies. Typically, interest lies in being able to determine

differences in mechanics between injured and healthy subjects or between injured and non-injured limbs

(i.e., inter-limb asymmetry). For example, White et al. (2019) uncover inter-limb knee asymmetries that are

masked during clinical hop tests designed to evaluate athlete readiness to return to sport following injury.

This was done by continuously monitoring joint angles and ground reaction forces generated throughout

a movement to determine knee power curves or knee power profiles. The continuous monitoring produces

functional data for each subject. Analyzing these functional curves and the extent to which they are affected

by injury or insufficient rehabilitation after injury can reveal underlying asymmetries. Figure 1.1 displays

the injured and healthy power profile curves for each of the 16 subjects in the White et al. (2019) study. Each
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gray curve in Figure 1.1 represents the continuous power in watts (scaled by subject weight in kilograms)

for one subject over the stance phase (time), normalized as a percent of stance phase.
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Figure 1.1: Knee power curves. The x-axis is the percent stance phase of the hop completed and the y-axis
is the power measured in Watts.

Historically, rather than consider the entire power profile curve like those in Figure 1.1 when carrying

out analyses, biomechanists reduce curves to one or two values of interest (e.g., value at maximum peak)

and perform univariate statistical analyses such as analysis of variance or a t-test to compare groups such

as healthy subjects and injured subjects. Recently, however, the biomechanics literature has migrated to

analyses that consider the entire movement curve (e.g., Hopkins et al. 2013, Koshino et al. 2016, Seeley et al.

2017, Hopkins et al. 2019). Utilizing entire curves takes into account the functional nature of the data, but

also introduces complications that are not present in a univariate analysis. One such complication commonly

encountered in functional data analysis (FDA) is the existence of variability along the horizontal axis (phase

variability or misalignment) in addition to that along the vertical axis (amplitude variability). It is common

to accommodate the latter in a statistical analysis, while the former is often of little interest. To illustrate the

two types of variability, consider Figure 1.2. The left plot in the figure demonstrates amplitude variation as

curves follow the same shape, but vary on the height or depth at certain times, while the right plot displays

phase variability as curves are offset. Notice that in the presence of phase variability, using a cross-sectional

mean at each time to produce a “representative” curve is problematic as the resulting mean curve may not

be representative of any of the observed curves, particularly at local extrema. Because of the misalignment,

in practice it is common to remove phase variability through a procedure called curve registration or curve

alignment.

Handling misaligned curves through registration or alignment has a rich literature. An early treatment

of curve registration is Sakoe and Chiba (1978) who align two curves based on certain features in the

context of speech recognition. Since then a substantial amount of effort has been dedicated to developing
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Figure 1.2: Example of amplitude variation (left) and phase variation (right).

methods that perform alignment by decomposing a curve into “amplitude” and “warping” functions where

the former measures differences on the y-axis and the latter on the x-axis. Early attempts in the literature

such as Ramsay and Dalzell (1991) and Lucero et al. (1997) seek to align curves for functional data analysis

through two-step procedures in which a warping curve is estimated and then curves are registered before,

and asynchronous to model fitting. More recent statistical work incorporates curve registration as an integral

part of the model building process and we focus on these.

Landmark methods carry out registration by aligning or connecting curves based on particular curve

features (see Ramsay and Silverman 2005, Wang et al. 2016 for an introduction). These methods are

considered to be the gold standard assuming clearly identified landmarks exist on each curve (Wang et al.

2016). Kneip and Gasser (1992) are the first to consider this method and explore theoretical properties, while

Kneip and Ramsay (2008) explore statistical properties of a warping function that incorporates landmarks.

Andersen and Runger (2012) estimate landmark locations and used them as predictors and Srivastava et al.

(2011) employ a geometric approach that matches landmarks using the Fisher-Rao metric. Others define

landmarks as locations of significant zero-crossings of the continuous wavelet transform (Bigot 2006) or as

curve gradients in addition to peaks and valleys (James 2007).

Absent clear landmarks, an alternative approach is to warp time so that curves are aligned to some target

function. An early approach to align curves using a target function was to estimate an unknown global shift

(Ramsay and Silverman, 2005, chapter 7 provides an overview). Other methods have been proposed, most

of which are built on work by Ramsay and Li (1998). Earls and Hooker (2017) and Telesca and Inoue (2008)

carry out smoothing and registration through a Bayesian hierarchical model where both warping function

and observed function are modeled with B-splines. James (2007) shrinks functions towards a common target

shape when landmarks are absent. Rakêt et al. (2014) simultaneously carry out registration and smoothing

using random effects modeling. Recently, Cheng et al. (2016) develop a curve registration method based on

statistical shape analysis and Lu et al. (2017) employ Gaussian processes to flexibly estimate the warping
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between curves. These procedures are able to very smoothly characterize the warping functions, but as

mentioned, landmark information is absent even when certain curve features have been identified by an

expert and their location is scientifically relevant.

Our approach is motivated by the desire to smoothly estimate the warping function, but also ensure

that the landmarks on subject-specific unwarped curves align on landmarks at pre-specified, known, time

points as informed by expert knowledge. To highlight the novel aspect of our approach, in Figure 1.1 we draw

attention to the times at which the minimum occurs for two subjects (t1 and t2) and the time at which expert

knowledge expects the minimum to occur (ξ). (See Section 6 for the scientific rationale behind this.) The

method developed by Telesca and Inoue (2008), called Bayesian Hierarchical Curve Registration (BHCR),

would produce well-registered curves but the two minimums would not be guaranteed to align. Landmark

registration methods would align the two curves so that the two minimums would occur at the same time,

but the alignment would be guided through a rigid linear landmark interpolation (LLI). In addition, neither

method would “anchor” the aligned curves at the correct location (ξ). The contribution of this paper can

be thought of as a compromise between the BHCR and LLI methods and will be able to anchor observed

landmarks at the times experts expect landmarks to occur. This last trait is one aspect that separates our

approach to the that found in Bharath and Kurtek (2020) who produce warping curves by partitioning the

time domain into disjoint sets defined by landmarks and in each segment estimate the curve. Thus, the main

goal of this paper is to develop a hierarchical registration model that includes a landmark informed prior

that makes use of available expert information in a very flexible way.

The rest of the article is organized as follows. We begin by reviewing the basics of registration and warping

functions in Section 2.1 and Bayesian FDA in Section 2.2. We present our template prior formulation in

Section 3 and associated model fitting details in Section 4. In Section 5 we compare methods using simulation

studies. Finally, we perform data analysis on the knee power data set in Section 6 and discuss implications

in Section 7.

2 Background and Preliminaries

In this section, we provide a brief overview of warping functions and the model we employ in our Bayesian

FDA.

2.1 Warping Functions

Functional data are often measured over time, and consequently, curve registration is also known as time

warping. The goal of registration is to map the original time t to a new time t? for all t in the time domain

and is typically carried out by way of a warping function ω(t) = t?. Figure 2.1 provides a simple example of

a warping function and illustrates how transforming time impacts the original curve. Note that the original

curve (indicated by a dotted line on the left) has a maximum at t = 0.5 while the warped function attains

its maximum at t? = 0.3. A visual inspection of the warping function ω(t) verifies that ω(0.5) = 0.3.

The baseline warping function ω(t) = t corresponds to a line with slope one and intercept zero, also
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Figure 2.1: Example warping function ω(t) is depicted on the right. The resulting effect on an observed
function is displayed on the left.

called the unit line, as this warping function does not alter time. Regions of a warping function that fall

below this line (as in figure 2.1) lead to a compression of time. Similarly, time expansion occurs when the

warping function raises above the unit line.

2.1.1 Warping Function Constraints

Not all real valued functions are permissible warping functions. Chapter 7 of Ramsay and Silverman (2005)

and James (2007) discusses elements of valid warping functions. Telesca and Inoue (2008) further restrict

attention to warping functions that comply with the following:

• limt→t1 ω(t) = ω(t1) (Continuous)

• t1 < t2 implies ω(t1) ≤ ω(t2) (Monotone increasing)

• ω(0) = 0 (Curves preserve origination time)

• ω(1) = 1 (Curves preserve termination time).

Continuity ensures that registration does not create gaps in time, monotonicity prevents partial time

reversal, and end-point constraints force curves to preserve their boundary times after registration. In

theory, the time domain can be any closed interval (i.e., T = [t0, T0]), but it is common to normalize time so

that T = [0, 1]. Without loss of generality we formally adopt these constraints in the modeling that follows.

2.2 Functional Data Model with Warping

Here we detail a commonly used Bayesian functional data model when registration is carried out simulta-

neously with curve fitting (see Telesca and Inoue 2008). This model will form the basis of our approach.
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For notational simplicity, we detail our approach assuming a balanced design. That is, measurements for

each subject are taken at the same time points t = (t1, . . . , tn). However, we make this assumption for

expository simplicity and the balanced design assumption can be relaxed in practice. Now, let yi(t) denote

the measured response from individual i at time point t and assume that

yi(t) = ai + cif(ωi(t)) + εi(t), for i = 1, . . . ,m, (2.1)

where f(·) represents an unknown “global” measurement curve, ωi(·) is the ith subject’s unknown warping

function, εi(t) ∼ N(0, σ2
ε ) is an error term with N(v, s2) denoting a normal distribution with mean v and

variance s2, and ai and ci are shift and scale parameters that account for amplitude differences between

the individual warpings. Model (2.1) is employed in Telesca and Inoue (2008). Since a common shape

function f(·) is assumed for each subject, it is equivalent to modeling observed curves as warped variants of

a “central” curve. To facilitate the interpretability and identifiability of ai and ci we employ
∑m
i=1 ai = 0

and
∑m
i=1 ci = m as identifiability constraints (see Telesca 2015).

Because the unknown object f(·) lives in an infinite dimensional space, it is common to reduce dimen-

sionality by representing f(·) as a linear combination of p basis functions (e.g., B-spline basis). As a result,

f(·) can be expressed as

f(wi(t)) =

p∑
`=1

β`H`(wi(t), ζ), (2.2)

where H`(wi(t), ζ) denotes the `-th B-spline basis function evaluated at warped time ωi(t) for knots ζ, and

β` the `th B-spline basis coefficient. The knot values span the range between the first and last measurement

times, regardless of subject. In matrix notation, model (2.2) can be re-expressed as

yi = ai1 + ciH(ωi(t))β + εi, (2.3)

where yi = (yi(t1), . . . , yi(tn))′ and ωi(t) = (ωi(t1), . . . , ωi(tn))′ denote the n×1 vectors of measured response

and warped times for the ith subject, 1 is a n × 1 vector of ones, H(ωi(t)) is the n × p B-spline design

matrix, β = (β1, . . . , βp)
′ is the p× 1 vector of the B-spline basis coefficients, and εi = (εi(t1), . . . , εi(tn)) ∼

Nn(0, σ2
εI). We note that p (the length of β) depends on the dimension of ζ and the degree of the B-spline

basis (which is cubic in what follows).

To finish the model construction, a model for ωi(·) needs to be specified. Older methods would estimate

a warping function before modeling, so it would simply be substituted in (2.3). More modern methods

simultaneously fit ωi(·) and f(·). The curve shape variability in Figure 1.1 would make a parametric model

difficult to estimate. Telesca and Inoue (2008) consider a nonparametric model by employing P-splines with

a small number of knots to model ωi(·). However, when performing registration, expert information is often

available regarding the location on the curve of prominent features (i.e., landmarks) and the approximate

time at which they occur. One could consider this information (which usually comes as a vector of feature

locations) as forming a “template” feature set which helps guide registration. Ideally, a registration method
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would be able to incorporate this information so that features of registered curves are aligned at the prespec-

ified feature locations. The methods that model ωi(·) flexibly (such as BHCR) are unable to utilize expert

input explicitly in the model, while methods that incorporate these landmarks are often not sufficiently

flexible. Our contribution to the curve registration literature is to develop a method that balances these two

objectives; specificity and flexibility.

3 Template Prior Registration Model

Landmarks, in principal, can be any prominent curve feature or simply a location on the curve that is

of interest to a researcher. One common landmark in the types of curves we consider are points whose

derivatives are zero (i.e., critical points). These types of landmarks are considered in the simulation study

of Section 5. In our application, in addition to these types of landmarks, we consider curve roots or zero-

crossings as well. critical points and zero-crossing both have biomechanical connections. More details are

provided in Section 6. Landmarks need not be defined using a mathematical characteristic such as a mode

or a root. Rather, they can correspond to any point of interest which can be associated with a specific

time or location on a curve. That said, having a mathematical definition, is more convenient when manual

landmark identification is tedious or infeasible as algorithms can automate the process. Although landmarks

may be specified to have occurred at any time in the time domain, it is computationally convenient to select

observed times as landmark locations. In cases where landmark definitions are not met exactly at observed

times, selecting the nearest point is reasonable.

In order to ensure that the warping functions we consider are informed by a “template” landmark set, ωi(·)
must align the occurrence of K landmarks to times specified by an expert. To this end, let ξ = (ξ1, . . . , ξK)

denote the prespecified (i.e., known) times at which K landmarks occur and Li the collection of time indices

at which the K landmarks occurred for the ith subject. (Note that both ξ and Li are known in our

application. In Section 7 we discuss how our approach can be employed when one or both is unknown.)

Thus, the observed times for the ith subject can be partitioned such that t = (tLi , tLc
i
) where tLi denotes

the collection of times where the K landmarks occurred for the ith subject and tLc
i

denotes the ith subject’s

remaining n−K time points. With this in mind, the additional constraint taken on by the warping functions

we consider is ωi(tLi
) = ξ for all i, resulting in the following class of warping functions

{ω : [0, 1]→ [0, 1] | ω(0) = 0, ω(1) = 1, 0 ≤ dω

dt
<∞, ω(tL) = ξ}. (3.1)

To incorporate the template feature constraints and preserve the desire for smooth warping curves, we

assign to ωi(·) a Gaussian process. The predictive distribution based on a Gaussian process will be informed

by landmark time occurrences so that the support of the resulting posterior distribution for the warping

functions is restricted to a class of functions that pass through ξ (more details are provided in Section 3.1).

To ensure that the support of the posterior distribution is also restricted to monotone functions, we employ

the methodology found in Lin and Dunson (2014) who advocate projecting the posterior distribution of ωi(·)
based on a Gaussian process onto the space of monotone functions. The result of the projection is an induced
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probability measure on the space of monotone functions upon which inferences are based. As mentioned in

Lin and Dunson (2014), this approach results in a posterior distribution for ωi(·) in an empirical Bayesian

sense, but not a fully Bayesian sense.

As mentioned, we propose modeling ωi(·) with a Gaussian process. The Gaussian process is centered on

the identity function, which corresponds to no warping, by setting the mean function equal to m(t) = t.

The covariance function we employ is the squared exponential so that

cov(ωi(t), ωi(t
′)) = K(t, t′;α, λ2, η) = λ2

(
exp

(
−α(t− t′)2

2

)
+ ηI(t = t′)

)
. (3.2)

Here α is the inverse range parameter that determines the smoothness of the curve, λ2 is the multiplicative

variance term, λ2η is the nugget effect where I(·) denotes an indicator function, and K(·) is the squared

exponential covariance function. The a priori assumption of no warping is consistent with the prior mean

in the method of Telesca and Inoue (2008). In addition to numerical stability, including a nugget effect in

the Gaussian process specification accommodates any uncertainty an expert may have regarding the specific

time at which a particular landmark is expected to occur. In the event that expert opinion is precise, one

could simply set η = 0 (although this may introduce numerical issues, see Section 3.2).

3.1 Joint Data Model

We have that ωi(tLi) is observed and equal to ξ for each i = 1 . . . ,m. This added information should be

considered when constructing a data model and thus the data model in (2.3) needs to be augmented by

ωi(tLi
). Our approach to building the joint model is based on the entire ωi(t) = (ωi(tLi

), ωi(tLc
i
)) where

we treat ωi(tLc
i
) as “missing” and use a latent variable missing data model (Daniels and Hogan 2008). As a

result, for the ith subject the full joint data model based on (2.3) and a Gaussian process for ωi(·) is

p(yi, ωi(tLi
), ωi(tLc

i
) | ai, ci,β, σ2, α, λ2, η) = p(yi | ωi(tLi

), ωi(tLc
i
), ai, ci,β, σ

2)× (3.3)

p(ωi(tLi
) | α, λ2, η)× (3.4)

p(ωi(tLc
i
) | ωi(tLi

), α, λ2, η). (3.5)

In this joint data model (3.3) and (3.4) together form the likelihood (both are functions of observed quantities)

and (3.5) is the latent variable missing model. Note that Gaussian error in (2.3) and modeling the ωi(·) with

a Gaussian process make it so that (3.3) - (3.4) are Gaussian densities. In particular, note that (3.5) is the

predictive distribution based on a Gaussian process which will produce warping curves that pass through

ωi(tLi) = ξ. In Section A.1 of the online supplementary material we provide the exact forms of (3.3) -

(3.5). To ensure that the warping curve is monotone (i.e., 0 ≤ dωi
dt

<∞), ωi(·) is projected into a monotone

functional space by finding

ω∗i = arg min
ω′∈M

∫
T

[ω(t)− ω′(t)]2dt, (3.6)

where M denotes the space of monotone functions (see Lin and Dunson 2014 for more details).
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3.2 Prior Distributions

To finish our model formulation, prior distributions for ({ai}, {ci},β, σ2
ε , α, λ

2) need to be assigned. Recall

that β corresponds to a vector of B-spline coefficients whose dimension depends on the number of knots.

Decisions associated with number and location of knots in ζ (see equation (2.2)) are important as they affect

the resulting curve fit. To facilitate this process, we select a large number of evenly spaced knots and employ

P-splines developed by Lang and Brezger (2004). This produces the following hierarchical prior for β

β|τ2 ∼ Np(0, τ2P−1)

τ2 ∼ InverseGamma(at = 0.1, bt = 0.1),
(3.7)

where P is a p× p first order penalty precision matrix and τ2 is a “smoothing” parameter. To ensure that

P is full rank, Telesca and Inoue (2008) change the value of P in the first row and column from one to

two, a procedure we adopt. For completeness, the P matrix we employ is provided Section A.2 in the online

supplementary material.

For the amplitude shift and scale we use ai ∼ N(0, σ2
a) and ci ∼ N(1, σ2

c ) for i = 1, . . . ,m as they

preserve constraints in prior expectation. We also assign commonly used InverseGamma(0.1, 0.1) priors

to σ2
a and σ2

c . For the smoothing parameter, α, employing a diffuse prior is not recommended (Banerjee

et al. 2015). Thus we use the following fairly informative prior for α ∼ Uniform(aa = 0, ba = n) where

ba = n is selected to impose a minimum amount of significant correlation (recall α is the inverse range).

Values much more than n are nearly unidentifiable and lead to numerical instability in the MCMC algorithm

employed. We set λ2 ∼ InverseGamma(al = 0.1, bl = 0.1) which is a commonly used diffuse priors and

σ2
ε ∼ InverseGamma(as, bs = 0.1) where as is a user-supplied value that is selected on a case-by-case

basis depending on the amount of measurement error that is present in the measuring process. In all our

simulations and analysis we employ as = m×n. The final step in model specification is selecting a value for

η. For the analyses considered hereafter, we use η = 0.005 which reflects precision of information regarding

landmark locations. We note that smaller values do not appear to provide much benefit, but frequently

result in computational instability.

4 Model Fitting Details

The joint posterior distribution of model parameters given data is not analytically tractable. Thus, we

resort to sampling from the posterior using a fairly straight-forward Gibbs sampler. The full conditionals

for {ai}, {ci}, β, σ2
ε , τ2, σ2

a, σ2
c , and λ2 are of recognizable form while those for α and ωi(·) are not. Gibbs

steps are used to update conditionally conjugate parameters. The full conditionals of these parameters

follow well known arguments and are provided in Section A.1 of the online supplementary material. To

update α, we employ a random walk Metropolis step and a normal distribution to generate candidate values.

The more novel aspect of the MCMC algorithm we construct is associated with updating ωi(·) for each

subject. We use a random walk Metropolis step with a suitably selected multivariate normal as a candidate

generating distribution. The candidate generating distribution is constructed so that landmark constraints
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are preserved. As a result all accepted candidate warping functions pass through landmarks. If a draw

from the full conditional of ωi(t) = (ωi(tLi), ωi(tLc
i
)) is not monotone, we employ the algorithm described

in Lin and Dunson (2014) to project the warping curve into the monotone functional space determined by

(3.6). This results in a draw from the empirical posterior distribution whose support is the class of functions

defined in (3.1). The exact form of the proposal density employed and more specific details of the model

fitting algorithm are provided in Section A.1 of the online supplementary material.

4.1 Registering Curves

There are two approaches available to register curves once the model given by (2.3) is fit. The first, which

is very natural from a Bayesian perspective, is to consider the posterior mean of ai1+ ciH(t)β (denoted by

âi1+ ĉiH(t)β̂). The absence of ωi(·) is key. Recall that the model attempts to fit observed curves as warped

versions of a “central” curve. This quantity represents a scaled version of the central curve, in which phase

variation is removed. Note that these registered curves will be identical from subject-to-subject except for

differences in ai and ci. This approach of alignment does not preserve the underlying shape of the measured

warped curve.

The second approach is to “unwarp” the observed curves using the posterior mean of ωi(·) (denoted by

ω̂i(t)). This is done by fitting a linear interpolation function to the pairs of points defined by ω̂i(t) and yi.

The result of the linear interpolation at points t yields an aligned curve which we denote using y(ω̂−1(t)).

This procedure of interpolation preserves the underlying shape of the originally observed curve. Because of

this, we advocate using this approach to produce registered curves.

5 Simulation Study

As discussed previously, two common uses of registration are to accurately estimate a mean function and

reduce phase variability. In this section we provide details associated with a numerical study that illustrates

the performance of our registration approach in these areas. To this end, we generate synthetic functional

realizations using two data generation scenarios, each based on a variety of mean curves and warping func-

tions, and then compare how our method does at estimating the mean curve and at reducing phase variability

relative to a number of other approaches.

5.1 Data Generation

We consider two simulation scenarios. Both consist of generating synthetic data sets under various mean and

warping functions. Each data set generated consists of m = 25 curves comprised of n = 31 time points. In

all data generating scenarios landmarks are defined as critical points (i.e., points at which the first derivative

is zero) and ξ is comprised of critical point times from the true mean or “population” curve.
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5.1.1 Data Generating Scenario 1

Our first generation scheme is concerned with removing phase variation. To this end, we consider using

randomly generated curves which vary only in phase. That is, there is neither amplitude variability (i.e.,

σ2
a = σ2

c = 0) nor observation error (i.e., σ2
ε = 0). In this setting, curves can be aligned exactly, which

not only provides a means to compare models, but also a measure of overall alignment quality. A curve is

generated using a three step procedure:

1. Select a true mean function and a baseline warping function.

2. Modify the warping function by adding smooth Gaussian process noise.

3. Warp the mean curve using the modified warping function.

The mean functions we consider for this data generating scenario are given in Figure 5.1 and are labeled

means 1, 2, and 3 from left to right respectively. These functions are used to assess how landmark count

affects registration results where mean 1 has two landmarks, mean 2 has three landmarks, and mean 3 has

six landmarks. These mean curves are nonparametric and are produced by using the B-spline coefficients

found in Tables S.1 and S.2 of the online supplementary material.
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Figure 5.1: Mean functions for simulation study. From left to right, we label these curves as mean function
1, 2, and 3 respectively. The number of features (peaks and valleys) are two, three, and six respectively.

The baseline warping functions we consider for this data generating scenario are given in Figure 5.2

and are labeled warpings 1, 2, and 3 with warping 1 corresponding to the unit line (i.e., no warping) and

warping 3 being the most severe. These are used to assess how increased systematic severity of misalignment

affects registration results. Besides the unit line which corresponds to no systematic misalignment, these are

circular arcs. See Section B.1 of the online supplementary material for details on how the warping curves

were obtained.

We create phase variability by adding smooth Gaussian process noise to the warped mean curve. To

do this we use a squared exponential covariance function with inverse range parameter of α = 5, marginal

variance of λ2 = 0.1, and η = 0. The Gaussian process noise is generated independently for each subject.
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Figure 5.2: Warping functions for simulation study. We label these as warping function one (solid line), two
(dashed line), and three (dotted line).

5.1.2 Data Generating Scenario 2

Our second generation scenario is concerned with curves which vary in both phase and amplitude but without

observation error (i.e., σ2
ε = 0). Additionally, the mean curves are not B-splines and the smooth noise added

to the warping function is not from a Gaussian process (i.e. the functions are not from the model). The

mean curves and baseline warping functions we consider are given in section B.1 of the online supplementary

material. A curve is generated using a five step procedure:

1. Select a true mean function and baseline warping function.

2. Generate a vertical shift term a and a vertical scale term c from N(0, 0.12) and N(1, 0.12) respectively.

3. Modify the baseline warping function and the mean function by adding smooth noise.

4. Warp the modified mean curve using the modified warping function.

5. Scale the resulting curve by c and shift by a.

To generate smooth noise we use a B-spline with 4 basis functions and generate the coefficients indepen-

dently from a N(0, 0.052) distribution. We note that this noise generation procedure, as well as the mean

curves and warping functions used for this study, are not devised from our proposed model.

In all data generating scenarios 100 synthetic datasets are created. An example dataset under each

combination of mean curve and warping function is provided in Section B.1 of the online supplementary

material.

5.2 Metrics To Compare Warped Curve Fits

To compare the performance of the procedures included in the simulation study, we use a variety of metrics.

The first measures each procedure’s ability to estimate the true underlying mean function f(·). It is inspired

12



by the squared-difference integral and is given by

RMSE =

√√√√ 1

n

n∑
j=1

[{H(tj)β̂ − f(tj)}2],

where β̂ is the posterior mean vector of B-spline coefficients and in an abuse of notation, H(tj) denotes the

p×1 vector of B-spline basis values evaluated at the jth time point. The second metric we consider produces

an overall measure of goodness-of-fit. Letting ŷi(t) = âi + ĉiH(ω̂i(t))β̂ denote the posterior mean of the

warped curve for subject i at time t, our goodness-of-fit metric is given by

GOF =

√√√√ 1

n

1

m

m∑
i=1

n∑
j=1

[{yi(tj)− ŷi(tj)}2].

This metric measures how closed the fitted curves are to their corresponding observed curves. Lower values

indicate better individual curve fits. The last metric we consider measures the variability between the n

aligned curves. As mentioned in Section 4.1, yi(ω̂
−1
i (t)) denotes the aligned observed curve for the ith subject

where ω̂i(t) is the posterior mean of the warping function. The aligned curve variability metric is given by

cVAR =

√√√√ 1

n

1

m

m∑
i=1

n∑
j=1

[
{yi(ω̂−1i (tj))−

1

m

m∑
k=1

yk(ω̂−1k (tj))}2
]
.

We include the cVAR in our study as it seems desirable for an alignment procedure to produce aligned

curves that display reduced variability, as this would result in more precise inference regarding a population

function.

5.3 Competitors

As competitors in the simulation study we consider BHCR and linear landmark interpolation (LLI). Like

BHCR, the data model of LLI is (2.3). However, unlike BHCR (and our method) ωi(t) is a fixed, known

piece-wise linear function that connects landmarks linearly. We include both methods as our approach can

be thought of as a compromise between the two. In addition to BHCR, we consider two other nonlandmark-

based approaches. The first is the elastic square-root slope (ESRS) approach (Tucker et al. 2013) which is

carried out using the time warping function found in the fdasrvf R-package (Tucker 2020). The second is

a Bayesian square-root slope (BSRS) function approach (Cheng et al. 2016) which is carried out using the

function group warp bayes found in the same R-package. Default parameters settings were employed for

both the ESRS and BSRS approaches.

5.4 Results of Simulation Study

To each synthetic data set created, we fit our model by collecting 1,000 MCMC iterates after discarding

the first 5,000 as burn-in and thinning by 5. We use the same MCMC specifications to fit the BHCR and

13



LLI warping procedures. All computation associated with our method, BHCR, and LLI was carried using

the R-package warptk which is available at https://github.com/wzhorton/warptk. For the procedures

that can be found in the fdasrvf R-package, default settings were employed. For numerical stability we fix

η = 0.005.
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Figure 5.3: Boxplot grid showing Log RMSE values under combinations of warping functions (x-axis) and
mean functions (y-axis) using the five considered methods for the first data generating scenario.

Here we focus on results under the first data generating scenario. The results under the second are

provided in passing with more detail provided in the online supplementary material. Figures 5.3 - 5.5 shows

boxplots of the log RMSE, log GOF, and log cVAR values. We also provide in the supplementary material

Tables S.3 - S.5 that contain the average RMSE, GOF, and cVAR values across the 100 synthetic data sets

for each data generating scenario.

From Figure 5.3 the LLI and our template prior approach perform the best at recovering the underlying

mean curve based on RMSE for all scenarios except the most complex mean function with the identity

warping function. Between LLI and our approach, the template prior method performs best for all warping

and mean functions. The other three methods perform similarly and tend to degrade more as the warping

becomes more extreme and the mean functions more complex relative to the landmark based methods. This

highlights the benefit of including landmark information that not only aligns curves, but also anchors them

at the correct time points. The non-landmark based methods suffer from an identifiability issue as they are

not able to determine where the aligned curves should be “pegged”. Figure S.3 of the online supplementary

material displays the log RMSE values in the second data generating scenario. There LLI outperforms our
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template prior approach based on RMSE. However, our template prior approach is still very competitive to

the other methods and performs better at recovering the true mean curve when observed curves display the

same type of phase variability (i.e., either time compression or expansion).
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Figure 5.4: Boxplot grid showing Log GOF values under combinations of warping functions (x-axis) and
mean functions (y-axis) using the five considered methods for the first data generating scenario.

Figure 5.4 displays the log Goodness-of-fit metric. Here, the results are more mixed. The ESRS and

BHCR outperform our template prior approach in scenarios with simpler mean functions. Our approach

performs best in the scenario with the more complex mean function. This is expected as more information

is included in the landmark approaches. It seems that the type of warping doesn’t impact much goodness-

of-fit. Overall, the LLI approach performs the worst. Figure S.4 displays the same metric in the second data

generating scenario. There ESRS method clearly performs best with our method outperforming the other

approaches.

Figure 5.5 displays the results for the log cVAR metric which measures the variability between the aligned

curves. Here BHCR seems to perform quite well with the simpler mean functions but our approach does

better for the more complex mean functions. In addition, our approach seems to degrade less as the warping

becomes more extreme. LLI in particular performs poorly while the BSRS and ESRS perform similarly.

Figure S.5 of the online supplementary material displays the log cVAR metric for the second data generating

scenario. There, all methods perform similarly with ours producing the smallest curve-to-curve variability

for more complex mean functions.

In short, the take-home message of the simulation study is that our template prior approach seems to
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Figure 5.5: Boxplot grid showing Log cVAR values under combinations of warping functions (x-axis) and
mean functions (y-axis) using the five considered methods for the first data generating scenario.

balance well the two main purposes of aligning curves in a statistical analysis; reducing variability between

curves and bias when estimating a mean curve.

6 Case Study: Knee Power

We now return to the knee power profile data described in Section 1. As mentioned, the biomechanists are

very interested in determining the difference in power produced by a healthy and reconstructed knee. We

investigate the impact that a severe injury has on the knee’s ability to produce power.

6.1 Registration of Knee-Power Data

Recall that White et al. (2019) seek to uncover inter-limb asymmetries after knee injury using clinical hop

tests. To this end, the 16 subjects in their study have undergone anterior cruciate ligament reconstruction

(ACLR) on one knee followed by a period of rehabilitation. Comparing power profiles between a subject’s

ACLR knee hop test to the corresponding healthy knee hop test may reveal hidden asymmetries that more

common peak value analyses may not capture. White et al. (2019) administer the triple hop for distance

task, which requires a subject to perform 3 consecutive maximal hops forwards on the same limb. Subjects

were allowed two practice trials for each limb and data collection was concluded when three successful trials

were attained for each limb. A trial is considered successful and recorded if the participant’s full foot lands
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on a force plate on the second of three hops and if they are able to maintain balance during the landing of

the last hop. In this study, a 12 camera motion capture system synchronized with 2 force plates was used to

record kinematic and kinetic data at 240 Hx and 1200 Hz respectively. Retroreflective marker trajectories

were exported to Visual3D software where knee angles were determined using the default Cardan sequence

method (X-Y-Z convention). Knee moments were subsequently determined using a standard inverse dynamics

approach. Joint power was then computed as the product of joint moment and angular velocity. White et al.

(2019) describe the full experimental setup in detail. The data are then time normalized to 100% of ground

contact. This normalized axis is usually referred to as the stance phase amount or percent stance phase.

Ground contact is defined as beginning with the heel strike (defined as the point when the vertical ground

reaction force exceeds 10N) and ending with the take-off (defined as the point when the vertical ground

reaction force is less than 10N). The measured outcome of each successful trial is the power profile of the

knee during the second hop. This profile or curve measurement is a clinically meaningful outcome as it

represents the capacity of the knee muscles to manage load.

For clarity, we briefly connect the power curves to observable physical movements. The initial power

reading begins with the heel strike. The negative peak occurs near 15% stance phase and is the moment of

maximal work done to counteract downward movement. Near 50% stance phase power reaches zero as the

subject reaches maximum knee flexion and ceases vertical movement, marking the end of the landing phase

and the beginning the take-off phase. Power peaks during take-off around 80% stance phase as the subject

works to exert enough force to jump. The end of the curve occurs with take-off. As a result, the landmarks

identified by the biomechanist are the global minimum, maximal, and root zero which are expected to occur

at 15%, 50%, and 80% stance phase.

Using these landmarks, we fit our template prior model separately to power curves produced by ACLR

and healthy knees employing the same estimation scheme as that of the simulation studies except for one

small change. Here, the we lower the upper uniform bound on α’s prior distribution from n to n
2 . This

produces smoothness in the warping functions that is needed to avoid over-fitting the complex shapes of the

observed data. BHCR employs a similar tactic by using a small number of basis functions. The aligned

curves for the ACLR knee and resulting from our method are displayed in Figure 6.1 while results for healthy

knees are provided in Figure S.10 of the online supplementary material. In addition to the aligned curves, we

include 95% point-wise posterior credible intervals of the mean curve. These are obtained by examining the

posterior distribution of H(t)β along a grid of t values. In addition to our method, we also provide in Figure

6.1 the aligned curves based on LLI and BHCR with their corresponding mean curve and 95% point-wise

posterior credible intervals.

Note that for all three registration methods it is more reasonable to estimate the mean curve by using

cross-sectional averages compared to warped curves in Figure 1.1. These results also highlight some differ-

ences found between registration methods. In particular, some BHCR registered curves are poorly aligned at

the minimum and maximum and the LLI aligned curves awkwardly towards the end of the stance phase. Also

consider the posterior mean warping functions given in Figure 6.2. Although BHCR sometimes fails to align

features which exhibit strong phase variation, it produces very flexible warping functions compared to LLI

registration which is much more rigid. We also see that template prior registration is able to simultaneously
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Figure 6.1: Registered ACLR knee power data with posterior mean curve bands. LLI left, BHCR middle,
Template priors right.

align specified features while remaining quite flexible.
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Figure 6.2: Estimated warping functions for the ACLR knee power data. LLI left, BHCR middle, Template
priors right.

To further compare the three curve registration methods, we compute the cVAR metric described in

the simulation study for all three alignments. Template prior registration has lowest value of 4.14 with LLI

warping and BHCR having 4.28 and 6.24 respectively. For the healthy knee curves, our method performs even

better with a cVAR value of 3.90 compared to 4.79 and 5.33 for the LLI and BHCR procedures respectively.

See Figure S.10 of the online supplementary material to see the aligned healthy curves.

6.2 Difference Curve Analysis

Of specific interest to White et al. (2019) is understanding how power profiles differ between ACLR and

healthy knees. To this end, in Figure 6.3 we provide each subjects difference curve (ACLR curve minus

healthy curve). We also superimpose the cross-sectional mean difference curve.
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Figure 6.3: Knee power profile difference curves with cross-sectional mean given by a darker line.

At first glance, one might conclude that no meaningful difference between knee groups exists due to the

flat mean difference curve. However, phase variation can diminish, mutate, or completely mask effects in

differences. Thus, we construct difference curves based on the aligned ACLR and healthy curves obtained

from the previous results, then estimate the average difference curve using the posterior distribution of

H(t)βACLR −H(t)βHealthy. These results are shown in Figure 6.4. Pronounced shapes in these difference

curves are visible where they were masked previously due to phase variation. Notably, all three methods

suggest a power increase - or rather a negative power decrease - near the first feature at 15% stance phase,

which corresponds to injured knees producing less power during landing. The results showcase the usefulness

of registration in unmasking potential patterns.

We note that the lack of variability at t = 50% in Figure 6.4 is expected. Recall that the central landmark

we consider is the time at which the power curve crosses zero as a subject transitions from landing to launch.

Our method (and LLI warping) ensures registered curves present this feature at t = 50%, resulting in the

pattern seen.

Figure 6.4 also highlights the advantage of landmark based alignment when analyzing differences. LLI

warping and template priors produce flat mean difference curves which have the initial negative power

decrease discussed. BHCR however introduces artificial patterns which do not exist in the data. Although

phase variation has been removed from the ACLR and healthy groups separately, BHCR does not guarantee

alignment between groups, thus producing artificial patterns in the difference curves. On the other hand,

landmark methods do guarantee alignment between groups as long as the reference landmark locations are

common, making them a convenient tool in these settings.
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Figure 6.4: Aligned knee power profile difference curves with mean difference curve band given by a shaded
region.

7 Discussion and Conclusion

We have developed a curve registration method that explicitly incorporates expert knowledge on the type

and location of landmarks into a “template” prior. This method blends the reference feature mechanics of

landmark matching with the flexibility of BHCR. Using simulation we show that template prior registra-

tion more accurately estimates underlying mean functions relative to non-landmark counterparts, but also

produces aligned curves that are less variable compared to landmark based methods. We also demonstrate

the utility of template prior registration on a knee power profile data set and show that it produced aligned

curves that are less variable relative to other registration procedures.

While the development of our method was motivated by an exercise science study in which landmarks

were clearly defined and experts had information about when they should occur a priori, our method can be

effectively employed in other settings. For example, if landmarks are clearly defined but the expert is unsure

when the landmarks should occur, then the time at which the landmarks occur is immaterial and as a result

can be empirically assigned (e.g., through a mean occurrence time). In this setting “anchoring” the aligned

curves at specific time points is not crucial and so inference for the average curve will not be impacted. We

intuit that this would result in a method similar to that found in Bharath and Kurtek (2020). In situations

where landmarks are not clearly defined our methodology can still be employed. In this setting Li = ∅ for

all i and as a result t = tLc
i

and the joint data model becomes

p(yi, ωi(t) | ai, ci,β, σ2, α, λ2, η) = p(yi | ωi(t), ai, ci,β, σ2) p(ωi(t) | α, λ2, η). (7.1)

We intuit in this setting that the warping functions estimated based on (7.1) will be similar to those of

Telesca and Inoue (2008) and Lu et al. (2017).

Lastly, even though it is common in biomechanical applications to “normalize” curves so that each

subject’s measured curve begins and ends at the same time, it is conceptually straightforward to relax this
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requirement in our methodology. This can be done by adopting the stochastic time model approach similar

to that found in Telesca and Inoue (2008). As described there, we could consider a monotone map time-

transformation from T = [t0, T0] to an interval [t0 +δi1, T0 +δi2] where δi1 and δi2 are random. Pursuing this

idea further is the topic of further research. In addition, addressing issues surrounding missing or extraneous

landmarks, something that plagues most landmark methods, is a topic of future research.

Overall, we have shown that template prior registration is a flexible registration method, drawing on

the benefits of a model-based approach, that also enables experts to incorporate their own subject matter

expertise. The ability to utilize expert input along with modern techniques may be of great benefit to

biomechanists and other practitioners.

8 Acknowledgments

The authors thank the editor, associate editor, and three anonymous referees for reviewing the article and

providing valuable comments that greatly improved the quality of the paper.

9 Supplementary Material

The online supplementary materials for this article contains additional results from the simulation studies

and the power knee application, as well as computer codes that were employed to run the simulation studies.

The R-package warptk, available on the first author’s Github page https://github.com/wzhorton/warptk/,

contains codes for fitting the template prior method described in the paper.
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